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ON ARMA PROBABILITY DENSITY ESTIMATION

Jeffrey D. Hart Henry L. Gray

Department of Mathematics Department of Statistics
University of Arkansas Southern Methodist University
Fayetteville, Arkansas 72701 Dallas, Texas 75275
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SUMMARY

A new method of probability demsity estimation is investigated
which exploits the Fourier series representation of a density function.
The new method employs density estimators f 5 ), p=0,1,2,... and
q =0,1, 2,..., which are such that {0 } ) is a Fourier series (Kronmal-
Tarter type) estimator and f 9( ) is an autoregressive estimator. Each
of the estimators Eﬁ’qf )'(referred to as ARMA estimators) is shown to
depend upon the eﬂ;transform, thus providing a strong motivation for
the use of estimgfors with both p > 0 and q > 0. Small and large
sample properties of ARMA density estimators are obtained and a
data-based method of selecting optimal values of p and q is proposed.

The results of a simulation study show that, for the densities con-

sidered, a savings in integrated square error is attained by using

ARMA, rather than Fourier series, density estimation.
N\
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__CHAPTER I

INTRODUCTION

1.1 Introduction

—— .. .The purpose of this work is to investigate

a method of probability density estima;ion which is based upon what
will be called the ARMA method of approximating a function. The

ARMA method employs representations of the form

q
2 Bkeikx
k»-q -
f (x) = B_.= 8,) (1.1)
P.q ll-aleix- vee = Q eiple k Tk i

to approximate the real-valued function £(*) over the interval
[-n,7]. The acronym ARMA is used because of the fact that, if
£ q(') is nonnegative, its numerator may be expressed as

b

P

ix

kll-Ble - hee = quiqxlz for all =x ¢ [-n,n] .

Expressed in this way, fp,q(') is seen to have a form equivalent to
the spectrum of an autoregressive, moving average (ARMA) process.
Because of the wide applicability of the ARMA model in time
series, representations such as (1,1) have a very natural motivation
in spectral estimation. The motivation, to be developed fully in
succeeding chapters, for their use in probability density estimation
must obviously be somewhat different. For the present we simply point
out that the relationship of fp,q(') to a numerical analysis tool
known as the onftransform implies that ARMA representations are
attractive as an spproximation scheme. Their value as an approxi-
mation scheme in turn suggests their possible value {n the estimation

setting.




In Chapter II definitions of the constants Bk(k-o,l,...,q)
and ak(k-l,....p) will be given which, for a given function £(-),

uniquely define an approximator fp q(') for each pair of values

(p,q). The approximator so defined depends only upon the Fourier

coefficients ¢(0), ¢(1),...,9(pHq), where
"
$(v) = f e 1% (x) dx, |v] = 0,1,2,...
-

(note that ¢(-v) = ¢(v)). Thus if £(-) is the probability demsity
function of a random variable with support [-7,7], estimators
Ep,q(') of f(+) can be formed by estimating the Fourier coefficients
of £(°).

In light of the many existing techniques of density estima-
tion, one might reasonably question the consideration of the class
of estimators just described. In order to be of more than simply
academic interest, a new technique should either have the potential
for improvement over, or shed some informative light on existing
techniques. Hopefully, it will be shown that the method of demsity
estimation being proposed satisfies both of these requirements with
respect to

(1) Pourier series density estimators, and

(11) autoregressive density estimators.

It will be seen shortly that these two classes of estimators
are members of the general class of ARMA density estimators. Before
embarking on an investigation of ARMA estimators, it will thus be
expedient to briefly discuss the origin and properties of Fourier

series and autoregressive density estimators.

b s s




1.2 Fourier Series Density Estimation

Cencov (1962) first suggested the use of Fourier series
ideas in the estimation of a probability density function. Let
Lz(r) be a Hilbert sgace whose inner product is defined by

(¢,9) = lﬂ ¢ (x)¥(x)r(x)dx,

where r is a weight function. Let £(*) be the density of a random
variable X and assume that £(°) ¢ Lz(r). Now, suppose Em is an
arbitrary m-dimensional subspace of Lz(t) with orthonormal basis
{Elm""’Emm}' The best mean square error approximation of £(x)
in Em is
m

™ - kfl

where—

I CRRE R LSO LT O)

¢1m51m x) ,

If a random sample xl,...,xn is obtained from £(*), then Cencov

suggests estimating £(x) by

- m
ORI

where
1

b ™ 3 Elsh(xi)rcxi) :
Cencov points out that E[(lgm(x)-f(x){lzl can be made arbitrarily
small by choosing a sufficiently good approximating subspace Em
and then taking a large enough number n of observations.
Krommal and Tarter (1968) have investigated a special case
of the above by considering the weight function r(x) = 3%;— I[a,b](x)

and the orthonormal system




1 x-a x-a
{ L con 1) reves con M(Ta.)} .
Based on this system an estimator of f(x) (x ¢ [a,b]) is

p s o x-a
fm(x) - —-2—+ ki ¢kcosk" (b_-a-) »

1

- 2 n kn(Xy-a)
¢k - o) L cos -(é'a's_ I[a,b](xi) .

i=1

wvhere

It can be shown that

Ao 1] 1
cov(¢j.¢k) = ;[3:; (¢j_k+ ¢j+k) - ¢j¢k] 3 2%

where

b .
- 2 x-a
¢k b-a £ f(x) cosvk (b-a )dx .

This leads to a simple expression for the mean integrated square

error (MISE) of fm(-), namely

E [L(émcx) - f(x))zr(x)dx] - -2-3—(1,—3; - 42

Making use of these results Kronmal and Tarter prove the following

theoren.

Theorem 1.1 If the Fourler cosine series of the demsity f£(-)

converges uniformly and if m = o(vn), then

1lim E(Em(x) - f(x))2 = 0 (uniformly in xe(a,b])
oo

and

ba
Ua & f(E (x) - £ Pex =0 .
e a

;
|
{




The importance of this theorem is its establishment of the rate
at which the truncation point m may increase with the sample size
in order for Em(-) to be a consistent egtimator of £(<). In
addition to this asymptotic result, Kronmal and Tarter devise a
procedure for choosing an m which, for a given sample size,
minimizes the MISE.

Approaches for estimating f(*) using different orthogonal
systems of functions have also been considered. For example,
Schwartz (1967) has investigated the use of Hermite polynomials.
In the present study, however, our principal interest will be in
the trigonometric systems because of their close association with

ARMA approximators and estimators.

1.3 Autoregressive Density Estimation

Carmichael (1976) has adapted the idea of autoregressive
spectral estimation to the estimation of a probability density. In
order to briefly outline Carmichael’s method, let £(+) be the pdf

of a random variable X with support [-7,7]. Define R(*) by

T
R(v) = [ e-ivxf(x)dx , vl =o0,1,2,... .
-T

Let (ulm,azm,...,amm) be defined as the solution (assumed unique)

of the following system of Yule-Walker equations:
P - -t - - - -
1 R(~1) ... R(-m+l) “hﬂ R(1)

R(D 1 ... R(-m+2) sl - [RD

L] . . . .
L] . . . .

L R(m~1) R{(m-2) ... 1

- Lcml LR(m)l




The m-th order approximator of f(x) is then defined by

Carmichael as

1

m
fm(x) ® 7 ix 2ix mix;2 ’
I |
m mm

where km is chosen so that R(0) = 1.
The term approximator is appropriate since it can be shown
that

T
/ e-ivxfm(x)dx = R(v), |v] =0,1,...,m .
-1

When observations are available from £(-), an estimator Em(°) can
be similarly obtained by first estimating R(*).

Carmichael provides two motivations for the approach just
outlined. One motivation involves regarding {R(v):|v| = 0,1,...}
as the correlation sequence of a complex-valued, statiomary time
series. The spectral density £(-) of this hypothetical time series
is approximated by the mth order autoregressive scheme fm(').
Another motivation follows from showing the equivalence of fm(')
to an approximator formed by comstructing a set of polynomials:in

e:"x which are orthogonal with respect to the inmer product

L
(g,h) = f 3(eix) h(eix) f(x)dx.
~7

The weak consistency of fm(-) as an estimator of f£(+) has
also been established by Carmichael. This result may be stated

as follows. Let xl....,xn be a random sample from £(-) and

a

n -
R(v) --l-l;- tle ivxj .
j-

Then fm(') is formed by replacing R(*) by R(:) in the system of

m o A A it .



equations presented previously. If £(-) satisfies certain
regularity conditions and

3/2

3

= = 0 , then

me /o
nre
[fm(x) - f.(!)I 1 0 uniformly in x, where f_(x)=f(x) a.e.[-m,7].

Parzen (1979) proposes an additional application of auto-
regressive representations in the estimation of density-quantile,
or £Q, functions, where £(*) and Q(*) are respectively, the pro-
bability density and quantile function of a random variable X and

£Q(u) = £(Q(u)), 0 <u<1.

Although density-quantile estimation will not be invesgtigated in

this work, the ARMA method is easily adapted to this problem. It
is hoped that some of the forthcoming observations pertaining to

density estimation will find applications in the estimation of

fQ and other types of functions, such as hazard functioms.




CHAPTER_ IT

THE DETERMINISTIC SETTING: fP q(') AS AN APPROXIMATOR OF f(+)

2.1 Definitions and Assumptions

In the current chapter we will consider the problem of
approximating a function using a finite number of its Fourier
coefficients. To facilitate our discussion the following
definitions and assumptions are stated. The notation pre-
sented here will be followed consistently throughout the
remainder of this work.

| (1) £(+) denotes a real-valued function with domain
of definittion [~w,7], which we wish to approximate or estimate.
Unless otherwise stated, it shall be assumed that f(-) 1is square

integrable on [-rw,%], i.e.,

T2
[ £5(x)ax < =,
-7

(11) The sequence {¢(v): |v| = 0,1,2,...,} of Fourier
coefficients of £(+) is defined as
fﬂ e-ivx

$(v) = £(x)dx, |v] = 0,1,... .

-
Under the integrability condition in (1) |¢(v)| is finite for

all v, Note that if f(+) is a probability density functionm,
$(*) 13 simply its characteristic function evaluated at the

integers.




(111) Unless stated to the contrary, it will be assumed that
£(°) satisfies conditions which ensure that

1

£(x) =3~ L O(V)eivx. a.e. [-m,7],

One such set of conditions (see Apostol (1973)) 1is that £(°*) be

continuous and of bounded variation throughout {-w,7].

(iv) £(+) will be said to have an ARMA representation iff

q
T Bveivx
=q
ix ipxlz

f(x) =
|1-a1e =eeo-ae

’ a.e. [-m,7] ,

where p and q are non-negative integers, Bv([vl = 0,1,...,9) and
ak(k =]1,...,p) are complex constants with B_v = E; , and the

roots of 1 - ulx-...-cpxp = 0 all lie outside the unit circle.

2.2 Discussion and Definition of fp qf-)

2

Before moving to the stochastic setting, the ARMA method
will be motivated by demomstrating its value ag a deterministic
approximation scheme. In the current section the ARMA approxi-
mator fp,q(.) is defined and showm to be related to the e -trans-
form. In Seccion.ZQ}_ truncated Fourier series, autoregressive,
and ARMA approximators will be compared as to their ability to
approximate a function £(°). Comparisons will be made on the
basis of how well the approximator fits f(+) visually, and also

by means of the measure

1SE(s%) = [T(£r(x) - £(x))2dx,
-%




vhere f*(+) approximates f£(-).

Given the Fourier coefficients ¢(0), ¢(1),...,4(m) (note
#(-v) = 3(v)) of a function £(.) with a series representation as
in the previous section, the most obvious choice for an approxi-
mator of f(x) is

1 T ivx
fm(x) il T ¢(ve .
ve-m

The error associated with this approximatiom 1is
1 ivx
lEx)-£ (D] = 5- |2 s,
lv] >m
which can be made arbitrarily small by choosing m large enough,
The convergence of fm(-) to £(-) is uniform if £(+) is continuous
and of bounded variation (see Apostol (1973)). 1In addition to

the pointwise error of fm(°), we have, by Parseval's theorem,

1r lew?.

ISE(fm) =
vemt+l

In certain applications or for certain functions, a suiikble
choice for m may be prohibitively large. In other words, fm ()

0

based upon a reasonable number m, of Fourier coefficients may not

0
provide an adequate approximation to £(+). Suppose, however, that
¢(mo+1), ¢(m0+2),... are in some sense related to the previous
Fourier coefficients. It may then be possible to exploit this
relationship and construct an approximator based on ¢(0),4(1),...,
¢(n0) which has better error properties than does fmg-).

A model for the relationship between the Fourier coefficients
of £(°) which 1s often at least approximately satisfied is

{4(v)} ¢ L(p,a) for v > q . (2.1)

where {fm} € L(n,4) for m > m, 1f there exists a smallest integer

n > 0 and a set of ci's such that

11




fm + clfm_1 + .00+ cnfm-n =0, m> my-

In the following theorem we establish the equivalence of

functions whose Fourier coefficients satisfy (2.1) and

functions having ARMA representations.

Theorem 2.1 Suppose the roots of

1-ax-...-a =0
)

all lie outside the unit circle. Then f(°) has an ARMA repre-

sentation of the form

q
L Sveivx
ve—q

Il-aleix-...-apeipxlz

f(x) = a.e, [-r,7]

1££ ¢(v) - ul¢(v-1) - el - up¢(v—p) =0, v>gq.

Proof: Suppose first that ¢(v) satisfies the prescribed

difference equation. Now consider the function f; q(')
9

satisfying
q
L Bveivx
2 (%) = ve-q __ for x ¢ [m, 7
P.q ll-—aleix - ee = upeipxlz

where the Bv are chosen so that

[fal3%s  (x)ax = 0% (§) = 6(3) for || = 0,1,....q.
- Psq P»q

The system of 2q+l1 equations which must be solved to find the
Bv is readily seen to be linear, and it is tacitly assumed that

the system has a solution.

t
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Now consider, for v > q,

* - * - - - * -
05,q") = 91%5,q (VD) = -l = a0 (v-P)

n
- (e-ivx_a e-i(v—l)x_..‘_a e-i(v—p)x)f* (x)dx
- 1 P P.q
- f"e—ivx(l-aleix-...-a ePXyer  (x)dx
i P P»q
- q - -
e 1vxeiqx £ Bve ix(q v)dx
= f" =g
-n T amix _ = mipx
(1 a,e cen ape )
q q-v
zqu-l L sz dz
- =1 ve-gq .
1 (IJEiz - aes - ;;zp) '

Since v > q and the roots of 1 QEiz-...Qagzp = 0 agre outside the

unit circle, it follows that the above integrand is analytic

on and inside the unit circle. Thus, by the Cauchy-Goursat

theorem the integral is zero. It follows that @; q(v) satisfies
9

the same difference equation as ¢(v) for v > q. Since ¢(v) =

¢* (v) for v = 0,1,2,...,q we must then have ¢(v) = ¢* (v) for

Psq Psq

|v| = 0,1,2,... . By the uniqueness of the Fourier coefficients

of square integrable functions (and it is easily shown that a

function having an ARMA representation is square integrable), it

follows that

f(x) = f;’q(x) a.e, [~-7,7] .




14

’ One part of the theorem is thus proven. By mimicking a portion

of the above argument it is easily shown that
¢(v)-al¢(v-1) - e = ap¢(v-p) =0, v>gq,

whenever £(¢) has the stated ARMA representation.
Implicit in Theorem 2.1 is a method for forming an approxi-

mator of £(¢) in the situation where

o(v) - a1¢(§r-1)-...-ap¢<v-p) *0, v>q.

Given 4(0), (1), ¢(-1),...,4(-p~q), ¢(p+q) an approximator
f; q(°) can be constructed by first solving the system of

equations

a,4(q) + a2¢(q-1)+.--+up¢(q-P+1) = ¢(q+l)

a1¢(q+1)+u2¢(q) +...+ap¢(q-p+2) = $(q+2) (2.2)

a1¢(q+p-1)+uz¢(q+p-2)+...+up¢(Q) = ¢{q+p)

for al.....ap. The coefficients 80,8_1.81....,B_q,8q can then be

found by forcing 63 q(v) = ¢(v), |v| = 0,1,...,q, where

* -"-ivx*
¢p'q(v) [ e fp’q(x)dx and

-7
q
z Bveivx
£k (x) ™ y=q

Under the assumption that the roots of 1 -qlx-...-apxp -0

1ie outside the unit circle, the approximator f* (+) satisfies
Psq




0;’q(v) = $(v), |v] = 0,1,...,p4q . (2.3)

This property follows from the fact that by (2.2) and Theorem 2.1,

$(v) and ¢; q(v) both satisfy the difference equation
»
y(v) - aly(Vhl)-...-apy(v—p) =0

for v = q+l,...,q+p subject to the initial conditions y(v) = ¢(v),

|v] = 0,1,...,q.

Property (2.3) justifies the use of the term approximator
for é; q(°) even when ¢(°) is not well modeled as the solution to
»
a df ‘“erence equation., The following error properties of f; q(°)
?
are a simple consequence of (2.3).
l£x) - g2 ()] = 3= E(o(w) = 8% ()]
Psq 2" lv'>p_l_q P’q
(2.4)

1 3 ' 2
3 lem-ax @7 .

ISE(f* ) =
Psq veptq+l

Although the method discussed above for constructing f;’q(')
is informative, it can be quite cumbersome analytically. The approxi-
mator fp,q(') to be defined below will be shown to be identical to
f;’q(') under the assumption that the roots of 1 - a,x - ... - apxp =0
lie outside the unit circle. However, fp,q(°) has the advantage of
being much simpler to comstruct than f;’q(°). In addition, the
dependence of fp’q(-) upon a numerical analysis tool known as the
cn—transform provides important insight into why the ARMA method

is of value as an approximation scheme.

Before defining fp q(-) we give the following definition of
?

15
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the en-transform.

Definition 2.1  Given the sequence {a , seees} of complex
= A el

3 f
numbers and the partial sums Aj =z a, we define (for m>n+k-1) ;
v=k i
Ah-n Ahrn+1 ot Ah
pntl  Pmentz 0 Fpel
a, a1 RIS
e (A) =
1 1 ees 1
p-ntl  Zwnt2 07 Zml
L] L] l
a a cee B L

whenever this quantity is defined. If both numerator and
denominator are zero, then define en(Am) = en—ICAh)' 1f only
the denominator is zero, then en(Am) - o,

The important result associated with the enftransform
is that in a wide class of problems en<Am) is a better approxi-
mation to A_ than 1is Anhn' With Definition 2.1 we are now in

a position to define the approximator fP q(').
]

Definitfon 2.2 Let {4(k), ¢(k+l),...} be a sequence of Fourier

coefficients of £(-). Then the approximator fp q(-) of £(-) is
?*




o h

defined as

£, (0 = %[¢(0)+2Real{ep(l’q(x))-Fo(x)}], x e [-m,7],

where 1
qQq-p+1l, q+1-p<0O and
k=
1, q+1-p>0
]
I oewe™ , 33k
=k
Fj(x)-
0 » I <k . 1
Since

() =3 T owel™ = L(p(0)42Real ( T sl ,
ve—o v=1

e (F (x)) - F.(x) is seen to approximate I ¢(v)eivx. The
P q 0 v=]
extent to which ep(Fq(x)) - Fo(x) is a better approximator of

this quantity than pf%(v)e1vx depends upon the particular

=1
sequence {¢(v)}. Conditions under which en(Ah) converges more
@ ntm
rapidly (as m + ®) to I a, than does I a have been estab-
vk v=k

lished by different authors, including Shanks (1955), McWilliams
(1969), and Gray, Houston, and Morgan (1978). Except for Theorem
2.2, however, the discussion of these conditions will be postponed
until Chapter IV. For the present, we simply note that they pro-
vide an important motivation for using the cu-transform in situa-
tions where {an} is not the solution of a difference equation.

The strongest result concerning the en-transform is the

following.
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Theorem 2.2 Suppose the complex sequence {am} is an element of
L(n,A) for m > LA and that the roots of the assoclated character-

istic equation are outside the unit circle. Then

®
en(Am) = La forallm>m,.
=k

Proof: See Gray, Houston, and Morgan (1978) for the case of
{am} real. The extension of the proof to include {am} complex

is trivial.

By applying the results of Theorems 2.1 and2.2, the equi-

valence of f; q(-) and fp q(-) is easily shown. Morton (1981)
1 4

has also proven this result in the context of power spectral

density estimation.

em 2.3 . * (. .es
Theorem Let fp,q( ), fp,q( ), and )58y, ,up be as defined

préviously, and suppose that the roots of l-clx-...-apxp = 0 are
outside the unit circle. Then we have

§00)E gl -

Proof: Let k be as in Definition 2.2 and consider
a

ivx
£ % *
= ¢p,q(v)e , Where ¢p’q(v)

ig the vth Fourier coefficient of f; q(-). Since {¢; q(v)}
’ 1
satisfies a pth order difference equation for v > q, then g0 does
{¢; q(v)eivx}. Therefore, by Theorem 2.2, we have
’ -

- ivx
ep(!:(x)) vka;’q(v)e .




This implies that

1
3;[¢;’q(0) + 2Real{ ep(F:(x)) - Fo*(x)}]

1 * > ivx
- == 0) + 2Real( I ¢* = f% .
2% [¢P,q( ) Rea (v-1¢p’q(v)e )] fP.q(x)

However, since ¢; q(v) = ¢(v) for |v| = 0,1,...,p+q it follows
9’

that

1
~2—;[¢;’q(0) + 2Real{ ep(F:(x)) - Fa(x)}]

1 .
= ;,;(4»(0) + 2Real{ ep(Fq(x)/-Fo(X) - fp q(x).

- %*
Thus, fp,q(x) fp’q(x).

Since f* (°) and £
Psq p

q(') are equivalent under the condition

(which shall henceforth be referred to as coandition S) that the

roots of 1 - alx - e = apxp = 0 lie outside the unit ci;cle,

follows that fp

it

q(') satisfies the error properties of (2.4) under

condition S. However, the following two important facts are noted

at this time.
(a) If condition S is not satisfied, then f; q(') and
]
£ (+) are not in general equivalent.

P»q
(b) If condition S is not satisfied, then neither f;

nor fp q(-) possess the property that their first
’

p + q@ + 1 Fourier coefficients are equal to ¢(0),

$(1),..., ¢(pHq).

Because of fact (b), it 1s not clear in what sense fp

q(-) is

q(')




approximating f(+) when condition S is not satisfied. When using

fp q(-) for approximation purposes it is thus important to always
]

verify whether or not this condition is met.

In concluding this section two special cases of fp q(')
*

are noted, When p = 0

q
f0,q() = Zr(8(0) + ZReal( T o™ ,

a Fourier series approximator, and when q = 0

k

_P 1
2w

|l -aleix-...-ape

£ (x) =

p»0 1px|2

an autoregressive approximator. The first of these two relationships
follows trivially from the definition of en(Ah). The second follows
from the fact, proven by Pagano (1973), that condition S is always
satisfied whenever q = 0 (assuming {¢(v)} 1is positive definite),

and thus, by Theorem 2.3, fp,o(-) s f;’o('). Autoregressive approxi-
mators have an advantage over ARMA approximators in that they always
satisfy condition S, which of course implies that ¢p’o(v) = $(w) for
|v| = 0,1,...,p. However, as will be illustrated in the next and
succeeding sections, there is much to be gained in considering
fp,q(.) for q > 0.

2.3 Examples Comparing Fourier Series, Autoregressive, and
ARMA Approximators

By way of illustration we will now compare the Fourier
series, autoregressive, and ARMA (p > O and q > 0) methods of
approximating a function. Since these methods are of interest

to us in the context of density estimation, the examples to follow




involve, for the most part, functions which are commonly used

as models for probability demsities. Although they are cer-
tainly not exhaustive, the examples given serve to illustrate
the value of the ARMA method as an approximation scheme.
Numerous additional examples already exist which show drama-
tically how the en-transttm accelerates the rate of conver-
génce of slowly convergent sequences, and in some cases induces
convergence of divergent sequences (see Gray, Houston, and
Morgan (1978)). Since the gsequences {Fm(x)} associated with
the functions of this section are not what would usually be
considered slowly convergent, the examples which follow are
not as dramatic as those just mentioned, but nonetheless
interesting.

In our first example, we investigate how well the Fourier
series and autoregressive methods fare in approximating a density
for which there exists ar error-free ARMA appioximator Con-
sider the function

V() = 2600 + 36,0 (x e [-n,7D)

a mixture of the densities

£y = L (.4742) | 1-.502%|2]1- (402t (B e1¥)2
. 2 |1-(.80e1(T/4)y 1% 2

anq

1 (.2775)
£ (X) = o= .
2 2n { 1+ (.850) %2 }

A result which will be proven in Chapter III is that the mixture
of densities having ARMA representations itself has an ARMA

representation. With this result it is easily verified that
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f(l)(°) has an ARMA (2,3) representation. By the earlier results

(1)
2,3

identical to f(l)(-), or, in other words, f(l)(°) is completely

of this chapter, it then follows that the approximator £, () is
determined by its first five Fourler coefficients. Of interest,
though, is a determination of how well the Fourier series and
autoregressive approximation schemes perform in this situation.
In Figures 2.1 and 2.2, respectively, the Fourier series

and autoregressive approximators based on ¢(1)(1),...,¢(1)(S)

.y, (1

0,10¢"
and fcl)(-), and in Table 2.1 a comparison of ISE is given for

have been plotted with £ Figure 2,3 shows a plot of f
the two methods being considered. The ISE for each approximator
has been approximated numerically by Simpson's rule using 201
function evaluations on [-7,m]. (The ISE in all the examples to
follow has been calculated in the same way.) The autoregressive
me;hod is seen to perform considerably better in this instance

than does the Fourier series method. In a visual sense féla(').

(1)
15,0

(and hence a plot of £

(*) are virtually indistinguisable from f(l)(°)

1)
10,0

series approximators, however, have difficulty in resolving the

(1)
f7’0(-),...,f

(*) has been omitted). The Fourier

peaks of 5(1)(-) without introducing spurious variation. This
shortcoming is even more important in the stochastic setting
where it is desirable to limit the cause of spurious variation
in a fitted curve to sampling variability. In Chapter VI a
data set is discussed which verifies the practical importance
of densities such as f(l)(-) which have rather sharp peaks.

In our last three examples we compare the three different

approximation schemes on functions which do not have ARMA repre-
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TABLE 2.1
ISE COMPARISON FOR FOURIER SERIES AND AUTOREGRESSIVE

APPROXIMATORS OF THE FUNCTION £¢1)(-)

k. 1sE (£{1)) 1se ()

5 .04216 .00238

6 .03332 .00055-

7 .02574 ,00025

8 .01495 ,00008

9 .01307 .00003
10 .00865 .00001 ‘
11 .00577 .00000

12 .00487 .00000 1
13 .00299 ,00000

16 .00230 00000

15 .00174 00000




sentations. 1In this way the versatility of the ARMA method is
investigated by examining its performance in situations which

are other than ideal for it. The functions considered are

(P - BEml @y L,
(D0 -2y,

and

£ = 6B P expl-2((x+m) /21%) .

The function f(z)(-) is simply a Beta (16,3) demsity which has
been shifted and rescaled so that its support is the interval
{-wsn]. The second function, f(a)(-), 1s a truncated double
exponential (or lLaplace) density, and f(a)(.) is a Weibull
density (with scale parameter 2 and shape parameter 6) which
has been truncated at w and then shifted and rescaled to have
support [~m,r]. Since f(3)(o) and E(A)(-) exclude, respectively,

972 of the area of the original

only .00035Z and less than 10~
densities, the comparisons to follow may be regarded as compari-
sons of the ARMA, Fourier series, and autoregressive density
estimation methods in the absence of stochastic errors.

Pictured in Figures 2.4 - 2.12 are plots of various
approximators along with the functions f(i)(-), i= 23,4,
Comparigsons of ISE are given in Tables 2.2 - 2.4, Both visually
and in terms of ISE, the ARMA approximators display a decided
advantage over the other two approximation schemes. A hallmark

of the ARMA method which surfaces in these three examples is

the ability of ARMA approximators to correctly fit both the

27
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TABLE 2.3

ISE COMPARISON FOR APPROXIMATORS OF THE FUNCTION f (3 ()

(3)

3 (3

k ISE(£5")) ISE(f) L) ISE(£.70)
1 .55890 .84191 .84191
2 .35518 .02652 .31226
3 .22480 .00403 .10221
4 .14523 .00602 .08036
5 .09675 .00613 .01784
6 .06662 .00517 .02481
7 04733 .00410 .00407
8 .03460 .00319 .00969
9 .02595 .00249 .00151
10 .01989 .00196 .00472
11 .01555 .00157 .00095
12 .01237 .00127 .00274
13 .00999 .00105 .00077
14 .00818 .00088 .00180 ,

15 .00678 .00075 .00067
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TABLE 2.4

ISE COMPARISONS FOR APPROXIMATORS OF THE FUNCTION £(%) (.

koIsEegthy  IsEGED ) ISEGESY ) ISECEY)
1 .44263 1.84975 1.84975
2 .3 20863 1.22354 1.22354
3 .10607 03968 11457 92122
4 .04106 0080 01615 87385
s .0L463 00155 .00228 68997
6  .00488 .00028 .00030 66224
7 .001s5 .00005 .00003 28571
8 .00047 .00001 .00000 1.271%
9 .00013 00000 .00000 54683

10 .00004 .00000 .00000 .90297




tails anh the peak of a function. In>Figures 2.4, 2.7, and 2.10
the Fourier series approximators are seen to correctly (or nearly
correctly) fit the peak of each function only at the expense of
incorrectly fitting the tails. By contrast, the ARMA approxi-
mators of Figures 2.5, 2.8 and 2.11 (based in each case on the
same number of Fourier coefficients as the corresponding Fourier
series approximator) smooth out variation in the tails while
still correctly fitting the peaks,

The autoregressive method performs quite well on the

function f(a)(°) but does very poorly on f(z)(-) and f(a)(-).

This phenomenon can be explained quite simply by examining the

Fourier series representation of the approximator f (). By

k,0
property (2.4) we have

8-, (@] = 35 | T -0 o0&t

lvl>k
and

EE, 9 = 2 I o) - 0 (@2
v=k+1 ’
The approximator Ek,d(.) obviously, then, performs poorly if it
does a poor job of extrapolating the Fourier coefficients ¢(k+l),
$(k+2),... . This is clearly what has occurred in the examples
involving f(z)(-) and f(a)(-). Our examples seem to indicate
that, in general, fixing the autoregressive order and allowing

the moving average order to increase is the best scheme for

reducing the error inherent in Fourier series approximators.

41
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Having examined the advantages of using the ARMA (as

opposed to Fourier series or autoregressive) approximation

method the remainder of this work i{s devoted to an investi-
gation of the ARMA method in the stochastic setting of prob-

ability density estimation.
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CHAPTER III

SMALL SAMPLE PROPERTIES OF ARMA DENSITY ESTIMATORS

3.1 Introduction

We now formally begin our study of probability demsity
estimation via ARMA representations. In the current chapter
we introduce the estimation problem and define an ARMA estimator
Ep,q('). Alternative ways of expressing Ep,q(.) are derived
which serve to motivate ARMA estimators and show explicitly
their relationship to Fourier series estimators. The main result
of this chapter, however, will be establishing the relationship
between Ep’q(‘) and the generalized jackknife statistic. It will
be shown that ARMA estimators employ an adaptive, higher order
generalized jackknife scheme.

Chapter III is concluded with a result concerning the ﬁixture
of densities having ARMA representations. The mixture of auto-
regressive densities is seen, in general, to be an ARMA density.
This result conveys the necessity of ARMA representations to a

theory based on the representation of densities by autoregressive

schemes.

3.2 Definition of the Estimation Problem and fp ¢1(-)

Suppose Y is a random variable with continuous probability
density function g(+) and that a random sample Yl,...,Yn is obtained

from g(*). In the remainder of this work we shall be concerned with
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the problem of estimating the function g(-).

All theoretical results will be based upon the assumption
that Y has the finite support [a,b]. To be consistent with pre~
vious notation, we shall in this situation consider estimating the

density £(*) of the random variable
X = =—=(2¥ -(b+a)]
(b-a) 2

which has support [-w,m]. As before it is also assumed that f(-)

has the Fourler series representation

£(x) = i%— z ¢(v)eivx , a.e, [-m,n) .
vE—®

Tapia and Thompson (1978) note that the finite support
assumption is only a small liability in practice since, in the j
absence of any prior information about g(+), it would be unrea- t
sonable to estimate the density outside the range of the data.
If ‘the support of Y is indeed infinite, or unknown, then a and
b may be replaced, for a given data set, by y(o) and Y(u+1)’
where

(1) Y (0) and Y (a+1) 2T "natural' minimum and maximum

values for the random variable Y, or

(11) Yoy " T and Y1) = I () (y(i) denotes the

ith order statistic of the random sample yl,...,yn).

The density g(°) is then estimated over the interval [y(O)’y(n+1)]
by first estimating an associated £(°) over the interval {-r,7]

using the transformed sample

b B ¢ = y (274
Y (a+1) "7 (0)

- (Y(n+1)+ Y(o))] (i - 1:..-,11).
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Under the finite support assumption £(+) is characterized
by the Fourier coefficients
T _fvx
o(v) = [ e TTaF(x), v =1,2,..., 1
-7
where F(*) is the cumulative distribution function (cdf) of X.
Given a random sample xl,...,xn from £(+) we shall estimate ¢(v)
by forming an appropriate functional of the empirical cdf Fn(°),
i.e.
N T —dvx
¢(v) = [ e dF_(x)
-7
n
= % Z e ivxj, vV = 1,2’000 .
i=1
The empirical characteristic function ¢(v) is obviously unbiased !

for ¢(v) and also possesses the following easily established

properties (see Tarter and Krommal (1970)):

var(a(v)) = ‘%(1 - |¢(V)|2)

A -~ - A (3.1)
eov(o(vl), ¢(v2)) = E(¢(v1)¢(v2)) - ¢(v1)¢(v25

- Lot v s pecv 1, v Ay,

For the situation where the support of the original random

variable Y is infinite or unknown we have

n 1 % -1vx
¢ =345 3
a
- ~% L exp{ q -ivw-Y ) [2Yj-(Y(n+1)+Y(o))]}.
j=1 (n+l) “(0)
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In this case ¢(v) is unbilased for the parameter

o*(v) = (e~ 1%y

= [ e ¥%(x) ax ,
-7

where £(*) is the density of the random variable

n
(a+1)"Y (0

X =

q ) (29) - @yt Yoyl -

The density being estimated on [-w,7] by the methods to be dis-

cugsed below {s thus

() = 5= I exwel™
vm—®

(where it is assumed that this Fourier series couverges). We

noﬁe that if Y( and Y are nonstochastic the properties in

0) (n+l)
(3.1) hold 1if ¢(v) is replaced by ¢*(v).
We are now ready to define the ARMA estimator %p q(*) of
]
£(<), where it is understood that f(+) arises in one of the two

ways described above.

Definition 3.1 Let {;(k), ;(k+1),...} be a sequence of estimated

Fourier coefficients. Then the ARMA estimator ;p,q(°) of £(-) 1is
éefined by |
Ep’q(x) -'5%—[1 + 2Real{ep(§q(x)) - ;o(x)}], x e [-m,7]
where
q+1l-p,q+l-p<0O
o { 1, q+1-p>0




J A

viie ¢

F.(x) = *
3 o , j <k

e, 3>k

It is seen that fp q(') is simply the stochastic analog of the

approximator fp q(°). Just as in the deterministic setting we

have the two special cases

pl 1 q - ivx
fO,q (x) = '2—"[1 + 2Real( 210 (v)e )]
and

1

B T il LA
1 P

b™

-~

fp,0() =

.

2n |1-;

a Fourler series and autoregressive estimator respectively.

3.3 The Generalized Jackknife Property of Ep q(')

Schucany, Gray and Owen (1971) introduced a generalized
notion of the jackknife statistic which greatly enhances the )
effectiveness of the jackknife as a bias reduction tool. Their
work exploits the specific form of the bias expansion of an estima-
tor and gives the proper notion for reapplication of the jackknife.

Following Gray and Schucany (1972) the generalized jackknife

may be defined as follows.

Definition 3.2 Let 81,92,...,9k+1

based on the random sample xl,...,xn. Further, let a

be k + 1 estimatc. s for 8

y I=1,...,k

13

and j = 1,...,k+1, be real numbers satisfying
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1 01 ... 1
31 %12 0 % ks
.. . $0 (3.2)
1 %2 vt Akl
Then the generalized jackknife G(el,ez,...,ek+l) is defined by
8. 8y ee- By
31 %1270 A,k4l
A - 1 %20t %,k !
G(8),8,5000,8, 1) = »

811 alzc ¢

) . .
.
. - .

81 Fe2ttt ALk

31,k+l

A simple form for the bias of the generalized jackknife 1s obtained

in the following theorem.

Theorem 3.1 1If

) ~0s= ¢ hij(n)bi(e). j=1,2,...,k+1

(8
3 =1

and (5.2) is satisfied with ‘ij - hij(n)’ then

E[G(SI’SZ”"’sk-kl)] = 8 + nc(nte)’ ’

LJMM.N«MM, —
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where
Bl 82 . Bk+1
hll(n) hlz(n) cee h1'k+1(n)
By @ .. by g @
BG(n,e) =
1l 1l eee 1
hll(n) hlz(n) oo h1’k+1(n)
hkl(n) hkz(n) ove hk,k+1(n)
and

@

By = I h ()b (8), §=1,2,... kL.
3 e 11

Proof: See Gray and Schucany (1972).

A

An immediate corollary to Theorem 3.11s tt .t G(Gl,ez,...,9k+1§

is unbiased for 9§ if
k

E(OJ) = 9 +151h11(n)b1(6)' J=1,2,...,k+l.

In order to see the sense im which fp q(-) is related to
t ]

the generalized jackknife recall that
~ 1 - -~
- a—— -+ -
fp,q(x) 5 [1 2Real{ep(?q(x)) Fy(x)}]

where




Foup(® R ) cee o)
o(q-pt1) 2 TPIIX g0 Loy llap)x $(q+1)el(aL)x
¢(q)eiqx ;(q+1)ei(q+l)x . ;(q+p)ei(q+p)x
e (F_(x)) =
e l 1 cee 1
;(q_pﬂ)ei(q-pﬂ)x ;(q_p_'_z)ei(q-pﬂ)x ;(q+l)ei(q+1)x
o(q)e P s (@DE L qapel(ate)x

Now, 1if G(fq-p(x)’ Fq_p+1(x),...,Fq(x)) is the statistic obtained by
replacing ¢(j) in the above determinants by fixed, known quantities,
then G 18 a generalized jackknife statistic. More importantly, we
note that ep(Fq(x)) and each of Fj(x), jJ = q-p,...,9r are estimators

of

I ¢(v)eivx
=k

(where it is assumed that the support of Y is finite and knowm),

and that Fj(x) has the bias expansion

E[ﬁj(x)] - E ¢(V)eivx = - f ¢(v)eivx = .7 ¢(v+j)ei(v‘+j)x.
v=k vmi+l vl

In the notation of Theorem 3,1, and allowing hmj(n) to depend on

unknown parameters, we then have

dapig-p-lyet HIRTEDE Ly,

j=l,c.e, p+1, m=1,2,... and bm(e) z -1,




The pth order en-transform of Fq(x), ep(Fq(x)), 1s thus seen to
be an adaptive, generalized jackknife statistic in the sense

that it employs estimates of the unknown terms hmj(n) in the

_p_1+j(x). In other words, ep(iq(x)) has

the same form as a generalized jackknife, but adapts itself to

bias expansion of Fq

a particular data set by estimating the unknown quantities hmj(n).

Of interest now is an expression for the bias of ep(Pq(x)).

We have

Bias[ep(i‘q(x))] - z[epdq(x))] - T ow)el™

=k

= E[e (§ (x)) - ¢ ¢(V)eivxl .
P 1 v=k

An easily proven property of the eu-transform is
en(A‘II +¢c) = .n(Ah) +c,

and thus

ol It @ ivx
Bias{ep(rq(x))] E[ep(rq(x) - vEkﬂv)e )l . (3.3)

Because of the fact that ep(Fq(x)) is nonlinear in Fq_p(x),...,
Fq(x). expression (3.3) canmnot be simplified further. The explic:r

form obtained in Theorem 3.1 for the bias of c(el,ez,...,ek+1) is a

1,92,...,9k+1. It is informative

to note, however, that if G*(Fq_p(x),....Fq(x)) is the random

consequence of G being linear in 8

variable obtained by replacing $(j) by ¢(j) in the definition of

ep(iq(x)), we have (by Theorem 3.1)

~ ~ © ivx ® ivx
' E[G*(Fq_p(x).---.Fq(x))] L $(v)e ep(Fq(x) -v5k¢(V)e )

v=k
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-T o(v)eivx - ) (v)eivx ve. =T ¢(v)eivx
veq-p+l vaq-p+2 veq+l
$(a-pr) et (TPDX (o piayamDx g (qupyt(atDx
O(q)eiqx 4’(<r+1)ei(q'"'l)x .os ¢(q+v)ei(q+p)x
1 1 ees 1
$(a-prD) et GPT (g piny @ DX |y (qupyel (Tt
#(qreld= 8yl (TDE g qapyet(TtP)E

Therefore ep(%q(x)) may be regarded as estimating a random variable
G* whose bias has the same form as that of a generalized jackknife.
A As has been pointed out previously, the ARMA method is
especially effective in approximating functions whose Fourier
coefficients are well approximated by the solution of a linear,
homogeneous, difference equation with constant coefficients. Of
interest, then, is the bias of ep(ﬁq(x)) under the assumption that

the density f£(°*) has an ARMA(p,q) representation.

Under this assump-

tion we have, by Theorem2.,2,

® ivx
vEk¢(V)e ep(Fq(x)) .

Thus, we have immediately that

Bias{ep(Fq(x))] - E[ep(Fq(x)) - ep(Fq(x))] .
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It is still possible, however, to gain some additional insight
into ep(Fq(x)) by showing precisely how it is related to the
Jackknife unde; the ARMA agsumption. To illustrate this rela-

tionship, we note that, again by Theorem 2.2,

. . +p
Blas[F, (x)] = - el x e (T s(v)el™),
=i+l =i+l

J = qg-p,...,q. An alternative form for expressing the en-trans—

form is

+ . e a
cm—nAh-n cm--n+1Ah~n+1+ + cmAm

L ] + k4
cm-n + cm-n+-l + cm

en(Am) =

vwhich is obtained by expanding the determinants in the definition
of en(Am) by cofactors of the first row. Using this form of e

we have (to be proven in Section 3.4)

$4p
e (T s(wel"®

P ey+l
‘ I+p +p-1 g
) ¢(v)eivx-aleisz syt . .-a _lei(P 1)x¢(j+1)ei(j+l)x
veit+l v=i+l P
ix ipx

1- ale - tee = ape

where the o, are as in Theorem 2.1. F,(x) obviously, then, hasg a

3 3

finite bias expansion, and using the notation of Theorem 3,1 we

take

o elf(p-m)x
p-m
1~a eix-...~a eipx , m=1,...,p~1
1 p
bm(ﬁ) ) =1 m=p
n oY L. JiPX 7
1 a8 -, ape
q-ptj+o-1 1vx
and hnj(n) = I d(v)e” ", mml,...,pand § =« 1,...,p+l.
v=q-pt]
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By Theorem 3.1 it follows that

* 2 - - iy ivx
ElG *(Fq_p(x) soos .Fq(x))] vikd»(v)e
G**(Fq-P(x)’...’Fq(X)) bd
Fq_p(x) Fq_p+1 (x) Fq (x)
$(qmpHL) et (TPHIE g0 igy et (ampt2)x o (qH1) et (TFD)®
q-p+2 q-p+3 q+2
L ¢(wel’® T ¢t T e(m)elV®
veq-p+l v=q~p+2 vsq+l
q q+l q+p
L ¢(v) eivx T ¢o(v) eivx T o(v) eivx
v=q~p+l v=q-p+2 veq+l
1 1 1
$(qmpt) T TFDE 0 iy 2P X g ey el (D)
q-p+2 q-p+3 q+2
I e(mel™® T e(v)el™ T a(v)elV®
veq-p+l veq-p+2 veq+l
q ‘I"’i- q+p
L (v eivx T (V) eivx T (V) eivx
v=q-pt+l v=q-p+2 vaq+l
|‘1 o“)‘

42,0
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Let A (x) be the matrix obtained by subtracting the (p-j)th
1,(3+1)

row of A, ,(x) from the (p+l-j)th row of A, (x), 1 = 1,2 and
’

1,3
j=0,1,...,p~2. Then

|41, (-1 |

,AZ,(p-l)(X)'

3

- G*(Fq-p(x),nnO,Fq(x)) ’

but, by a basic property of determinants, we also have

141, (p-1)™®| 41,0

IAz,(p_l)(x)' |A2,o(x)l

and therefore

G*(Fq_p(x),...,?q(x)) - G**(Fq_p(x),...,?q(x)).

As noted previocusly, ep(gq(x)) estimates the random variable G*, é
Thgrefore, under the assumption that f(*) has an ARMA (p,q) rTepre-
sentation, ep(%q(x)) is seen to estimate a random variable G**
which 1s constructed by the gemeralized jackknife scheme in such

a way that

E{G**] » I ¢(v)e1vx .
v=k

Although it 13 not possible to obtain a simple expression
for the bias of ep(%q(x)), the following observations are possible.
Suppose £(°*) has an ARMA (p,q) representation. Then the bias of
ep(i&(x)) is a result of the error inherent in the.estimation of

¢(v), |v] = 1,2,...,p+q. This source of bias may essentially be

removed by taking a large enough sample size n. By contrast, the
L) ~ L
bias of F (x), a logical competitor of e (F (x)), is - & ¢(v)e1vx
P q vej+l

3
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regardless of the sample size. These observations provide a motiva-
tion for considering ARMA estimators as a possible alternative

to Fourier series estimators.

To this point we have considered only the bias of ep(Fq(x)).
In concluding this section we note that the bias of Ep q(x) depends
]

only upon Bias[ep(fq(x))]. We have

Blas[f, (0] =E[f (0] - £(x)
= Zr{142Real{E(e (F (X)) - E(Fy(x))]]

- %mmu( £ sv)el™ - Fo(x))]
v=k

-'% Real {E(ep(iq(x)))- Fo(x)}

- L Real { £ 6™ - F (0}
v=k

l' o _® ivx
~ Real {E(ep(Fq(x))) vEk¢(v)e }

1 L)
- Real{Bias[ep(Fq(x))]}

3.4 Alternative Ways of Expressing fp q(')
]

In this section some different ways of expressing Ep,q(.)
are derived which will be useful in later chapters and also show
explicitly how ARMA estimators are related to Fourier series
estimators. The basic result inmvolves usiné the alternative form

of expressing en(Am) referred to in the previous section. This

tvesult is stated in the following theorem.




Theorem 3.2

a -~ ~ PS ipxu
F - - the =
q(x) aleixFq_l(x) ape thgﬁx)
° ix

h ule - hee = upe

ep(Fq(x)) = Tox

where (al,az,....ap) is the solution of the system of equations

- N R - r a -
¢{(q) ¢(q~1) eos $(q~p+l) $(q+l)
$Gatl)  8(q) b g o= | @] Gy
;(Q"'P"l) $(q+p-2) ;(q) ;(q+p)
- - b o
Proof:

e (5 (x) =2 Taep®) ¥ Cqpn (IF Ly 4 ke (OF ()
Pq _p(x) + cq_p+1(x) + ...+ cq(x)

q

where the cq_j(x) are cofactors of the first row in either the
numerator or denominator determinant of ep(Fq(x)). By performiﬂg
approriate row and column operations within these cofactors it

is easily verified that

- aF (x) - 2, F__ (x)-...-a elPF  (x)
¢, (F () = O4q 1-__q-1 p®  Tg-p (3.5)

ix - ipx
a, - a;e e ape

where
$(q) $(a1) oo 0(a=14D)  d(qH) $(a-1) ... $(qeptl)
s - MatD) 8@ ... b(ae43)  $(q4D) $(q=d4D) ... 8(qops2)

roee

$(a+p=1)  $(a+p=2) ... $(qtp=3+1) 8(q*+p) b(ato-i-1)... (q)




S8
j=1,2,...,p and
$(q) ¢(q-1) .. ¢(q~pHl)
ao = -~ -~ -~ .
¢(atl)  ¢(q) eee 0(q~p¥2)
¢(q+P"1) ¢(q+P'2) coe ¢(Q)
8, a, a
It follows that ( —, —,..., —£ ) is the Cramer's rule solution
3 % %
to the system in (3,4). By dividing numerator and denominator of
(3.5) by a, the result follows. i
- {
By the previous theorem fp q(x) may be expressed as
]
N F (x)va,e F__ (x)-...~c_e'P*F _ (x) .
£ (x) = 1 [1+2Reat( 31— i 24P _p (x))]. (
P»q 2m 1- aleix - tee = eipx 0
P

The results of Chapter 11,show that, 1if al,...,ap satisfy

condition S, Ep q(°) satigfies

¢p,q(v) = $(v) ’ |V| = 0,1..--.?“"1

where

- T ~ivx:
ty,q _{ e ) ax.
Using this fact and the result of Theorem 3.2, it is informative

to re-express £ (x) as
P»q

~ -~ - M‘ M‘
1 ivx ivx.
fp’q(x) T [l+22e11{ep(Fq(x))-Fo(x)+ ilé(v)e EIO(V)G 11 4

PH. . .
1 T awmel™ +%Real(e (F (x)) - F
Ve -p-q P4

(x))

27 P




59

0,p¥q
I~ pHq. N pHq.
I ¢(v)eivx uleix P ¢(v)eivx-...-a eipx T ¢(v)eivx
- Ypeal v=q+1 _ v=q _ P v=g-ptl
l-a eix - eee a eipx
! 1 P
fO.m(";
-~ - -~ p+q - L MA
1 c:leixd’(p+q)ei(p"'q)x+o,2e2:"x b ¢(v)eivx+...+c eipx T ¢(v)eivx
+ ;Real ve=p+q-1 p vmg+l
1 ~ Ix * 1px
-a,e - ... Qe
. 1 P
f . (3.6
£0,prq® * &5, ®) )

Expression (3.6) shows fp q(-) to be the sum of a Fourier series
L4

estimator fO,p+q

S, has the Fourier series expansion

(¢) and a function gp q(-) which, under condition
?

1 N ivx
= 3 ¢_ (Ve ’
M)v]>prg P29

where the gp’q(v) are extrapolated from ;(v), lv|] = 0,1,...,p4q,
using the difference equatiom y(v) - ;ly(v-l)-...—aéy(v—p) = 0.
We note, though, that (3.6) is valid regardless of whether or not
condition S holds, although ;P-q(.) does not have the same inter-
pretation in this case. The validity of (3.6) will be useful in

Chapter V when we counsider estimating the MISE of fp q(-).

A simple example which i{llugtrates the consequences of (3.6)

will be helpful at this point. Comsider the ARMA estimator £, (-).

1,q
By (3.6), we have
1(q+l)x

- ~ 4ix”
fl q( x) = (x) +'lReal e e ¢(q+l)e

ix ?

£0,q+1

1l- ule
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S T
¢(q)
1f |o,| < 1, L . % aY%e™ and thus
1 ix 1l
l—ule v=Q
- ix? 1(q+1)x
a,e ¢(qtl)e ® L. -
1 — - I [u1¢(q+1)]a‘1’e“"+q+2)x
l- ae v=0
- £ [;1;(q+1)]azbq-2eivx .
veq+2
Therefore,
p s 1 " ivx
£ = £ + -
l,q(x) O,q+1(x) 2n|v?>q+2l,q(v)e
where
8, () = [a,0(a+D)] VT2 | ¢ = b2, q¥3 (3.7)
l,q 1 \ 1 ’ » 90es o .
Obviously ¢1’q(v) - u1¢1’q(v-1) =0 for v > q + 2, but we also

have (by (3.7))
¢1,q(q+2) - ul¢(q+1) - ¢1’q(q+2) - u1¢(q+1) =0 .

This shows explicity how the ¢l q(v), v = q+2, q+3,..., are extra-
polated from ¢(q) and ¢(q+l) by using y(v) - aly(v-l) = 0,
Suppose now that in the above case condition S is not

satisfied, i.e. suppose Iall > 1. We then have

a10(q+1)ei(q+2)x _¢(q+1)ei(q+1)x
"~ 1x = =1 -ix
l1- ale 1l - °1 e

- I -8(qtl)a
v=0

-v_1(q+l-v)x
1@
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q+l . N
= T -o(qtay ? 1 ivx
v=0

-l “V-q-. 1vE
4+ I -¢ (q+l)a1 (N .

VR0

This implies that

;1$(q+1)e1(Q+2’x T
%Real —_— - ;Real{ L -¢(qtl)a,

l-a e1x v=0

1

v-q-leivx

+ I ~¢ (q+1);1

-v-q-leivx}'
v=1

Using this expression and (3.6) it follows that

- 1 r’S ’ ° )
2,05 = Z7lhy (O + Zeal( T4y (]

where

4 O =1 - 2Real[¢(q+1)azq-1]

and (3.8)

p)-(a+Day Tl (@ra]" 0 | v e 1, gn

¢1,q(V) =

-o(q+1)c;v-q-1 » V= q+2, q+3,...

It s easily verified that ¢, (v) - czl¢1’q(v-1) =0 for v > q.

However, by (3.8), fl q(-) does not integrate to 1 and does not
b

satisfy

¢1’q(v) = o(v), |v]=1,...,q+1.

Y

Therefore, fl q(-) 18 not as easily interpreted in this case as it
]

is when condition § is satisfied. It should be pointed out, though,

that the efficacy of fp q(') as an estimate of f£(+) may be assessed
9 .
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regardless of whether or not condition $§ is satisfied, as will be

shown in Chapter vy,

3.5 The Mixture of Densities Having ARMA Representations

As pointed out in Chapter I, Carmichael approaches the
density estimation problem by using autoregressive schemes to
represent the density f(+). Under fairly mild smoothness condi~

tions on £(+¢) Carmichael shows that

lim £ O(x) = f(x), uniformly in x, (3.9)
v

which implies the existence of a Py (for ¢ arbitrarily small) such that
[€(x) - fpo’o(x)I < ¢, a.e. [~7,7]. This result provides a justi-~
fication for using autoregressive representations in the egtimztion

of probabllity densities. However, it also leads indirectly to a
justification for considering ARMA representationg. In order to

show why this is so we state and prove the following theorem.

Theorem 3.3  Let fp q (*) (J = 1,2) be a probability density
373 .
function (defined on [-7m,%]) having the ARMA (p j’qj) representation
i, .ivx
Bs, ¢
vn-qj
|1-a ix eipjxlz i

and let 0 <y < 1.

Then the mixture density vf (*) + (1=v)f )

has an ARMA(pl + pz,k) representation, where k < max(ql*PZ’qz'*'Pl).




Proof: Let |l-a,.e - ... -« eipjxl2 = a,(x), §=1,2.

i b

Then,
4
Y vE-qflve
v (x) + (1-y)f (x) =
pl'ql P23q2 al(x)

ivx .

q
2 ivx
(1-v)z By®
v="d,

az(x)

q q
1 ivx 2 ivx
Yaz(x) I Blve +(1-Y)al(x) z BZve
v=-q, v==q,

al(x)az(x)
The denominator is obviously of the form

e o1X _ _ 1(p,+p,)x 2
[1 a,e ces ap1+p2e 177277 ° .

. P
In addition, since a,(x) may be expressed as Zjb eivx,the numerator

b v=-p v
K ]
is of the form I B8 eivx where k does not exceed max(q,+p.,,q,+p,).
k"’ 172°%°2° "1

The result thus follows.

By induction a similar result follows for the mixture of
m ARMA densities (m > 3).
A special case of Theorem 3.3 which is of interest is the

mixture of autoregressive densities. The mixture of f (+) and

P00

£ (*) is, by Theorem 3.3, an ARMA (p, + p,,k) density where
Pz:o 1 2

k < max (pl,pz) and, in general, k > 0. Carmichael's result, (3.9),

and Theorem 3.3 are thus seen to provide a strong motivation for
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ARMA representations in situations where f£(+) arises as the
mixture of densities. Of course (3.9) shows that even the
mixture of densities may be well approximated by an auto-
regressive scheme. However, the ARMA (p1+pz,k) representation

will necessarily be more parsimonious than a satisfactory auto-

regressive representation. This is important in the stochastic

setting where fitting too many parameters is to be avoided.




CHAPTER IV

LARGE SAMPLE PROPERTIES OF ARMA DENSITY ESTIMATORS

4.1 Introduction

We continue our study of ARMA density estimators by
establishing some of their large sample properties. In Theorem
4.1 conditions are stated under which %p,q(.) converges in prob-
ability to £(+), where b remains fixed and q tends to infinity
at a specified rate with the sample size n. The results of
Section 4.3 are the stochastic analogs of some of the work of
McWilliams (1969) involving the en-transform. Sufficient condi-
tions, which are more informative than those in Theorem 4.1, are
established for the convergence in probability of gl,q(.) to £(°)
(aé q and n tend to infinity). More importantly, El,q(‘) is
shown to possess a certain optimality property for densities
satisfying

v+1)

1lim = R.
o 2(V)

Finally, we point out that higher order (p > 2) results paralleling

those for fl q(-) are undoubtedly obtainable.
?

4.2 Conditions for the Consistency of fp q(')

A minimal requirement of any density estimator is its conver-
gency (in some sense) to the true demnsity function as the sample
size tends to infinity. Considerable attention in the literature

has been focused upon establishing some form of comsistency for
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various types of demsity estimators. The mean square error con-
sistency of Fourier series estimators has already been indicated
in Chapter I. Parzen (1962) has proven that for suitably chosen
weighting functions K(¢), the kernel density estimator

1 n x-Xj
= —1IK
) ““1-1( h )

is mean square error consistent for £(x) if h = h(n) satisfies %}5 h(n)=0 and
1lim nh(n) = =, Other estimators and different convergence criteria
:::e also been considered (see Tapia and Thompson (1978)).

In the following theorem conditions are stated under which

fp q(-) converges in probability to £(-).
]

Theorem 4.1 Suppose £(-) is a density defined on [-m,n] which
is continuous and of bounded variation on that interval. Based

on the random sample Xl,...,Xn from £(+), let ;§p’q)(j-l,2,...,p)
be-the solution of the system of equations in (3.4). For a fixed

p 2 1 and q(n) = o(vn) (where lim q(n) = =) suppose

bow )

A( b ) -

S S L)
p-lim 3 yeprg-i+l = 0, j=1,...,p, (4.1)

0] 2
Psq
where 2z - minll_;(p,q)eix_..._;(p,q)eipx[. Then

i xe[-w,7] P

p-lim fp (x) = f(x) forall x ¢ [-m,7] .
o »q

Proof: Using the relationship established in Chapter III we have

(assuming the existence of each limit)

p-lim £ _(x) = p-lim £
o> ® P4 e

O.M(x) * :;l,m sp.q(x) :
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Since £(*) 1s continuous and of bounded variation on [-w,7], £(x)

has a Fourier series representation, and thus

(x)] =2 syl | (4.2)

Bi afh
***o,pre 2"|v| >prq

which tends to zero as q + ». We have also

A P
var[f. . (x)] = fg var[Real( £ ¢(v)el'™)]

0,p+q vl

M“ P+q a
< %5 var[ I 6(me™) = 1o 5 var((w)

P

ov($(v), 8 (k)) e (VIO

o~
0

2
a-ls(v)] )

T (6(v-k)-(v)d(=k)) et (V-IOX |

1 1
+—2;
n v=1l k¥v

- x o n

If p is fixed and q = o(/n) it thus follows that

1im var[% (x)] = 0. . 4.3

oo 0,ph

By €4.2) and (4.3) we have (for q = o(vn) and unbounded)

p 2
1imE[f (x) - £f(x)]” = 0,
o (£9,p4q'® x
and thus
p~lim ; (x) = £(x).
pe  OsPH

We must now show p-~lim g (x) = 0 4in order to prove the theorem.
e

P,q
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Recall that

~

P
8y, = Jreall I 8PV,

=1
where
*(pyq) _13x PIT = ) dvx
8o}y o a, 0V en T 2 ofv]e )
3 1_;3(.p.q7eix_‘ L .~a(Prq) ipx
P
Since
- oaat -
IQ(P.Q) z ‘ ¢(v)l
] vepiq-j+l
zP’q

bounds Isgp’q)(x)l, it follows (from condition (4.1)) that
P
p-1lim ng’Q)(x) = 0, Therefore, p-lim I B(P’q)(x) = 0 and
ne - e =l 3
consequently p-lim g (x) = 0, Since x was chosen arbitrarily
e Psq
the result follows.

Several comments are in order regarding Theorem 4.1. First,
it should be pointed out that, since the method of estimating ¢(v)
is fixed, condition (4.1) is implicitly a condition on the Fourier
coefficients of £(°). In this work, however, the problem of trans-
lating (4.1) into explicit conditions on the sequence {$(v)} has
not been solved. It is hoped that a satisfactory solution to this
problem may be obtained after future research. For the present,
though, we note that the importance of Theorem 4.1 lies in the
fact that it points out where the difficulty rests in inducing

convergence from £ (). Since f (x) is consistent for

Psq 0,p4gq
f(x), it is clear that conditions need only be established to

insure that p-lim g_ (x) = 0.
e P2
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Although we will not be able to substitute conditions for
(4.1) which are as explicit as desired, the following observations
make (4.1) more palatable. We have
p+q ~ p+q -
I few = T [4(v) ~ 6(v) + ¢(v)|
vepig-J+l vepiq-3+l
PHq . pq
2 Jem-ewm| + o],
vepiq~j+1 vephq~j+l
which converges in probability to zero (as n + =) by an argument
similar to that in Theorem 4.1. In addition, it is easily verified 1
that
pq . 1
t |¢(w)-o(")| =0 (7—') ,
vepiq-j+1 Pva
and thus a gset of conditions which may replace conditiom (4.1) is: "
|;(PtQ)|
W ——— - o (A, (=12....p ‘
|4
P.q
riq 1
(11) I [e(w)| = o(/-;-) .
g+l o
Although it is still not precisely clear for which densities (1)

and (11) are valid, this set of conditions is somewhat more informa-
tive than condition (4.1).

It is {mportant to note at this point that one member of the
ARMA class, Eo,q(-),'is mean square error consistent for f(+) under

the single condition that £(°*) have a Fourier series representation

for all x ¢ [~r,n]. This fact was proven in Theorem 4.1, Because

of the consistency of fo q(~), Theorem 4.1 would not be extremely
9’




important unless it could be shown that fp q(-) (for p > 1) in
9

some gense converges more rapidly to £(°) than does Eo’q(-).

Establishing conditions which insure the more rapid convergence
of gp,q(') proves to be quite difficult in general. However, i
in the next section we consider the special case of El.q(.) and

obtain some quite satisfying results.

4.3 Large Sample Results Invoiving £, ()

1,9

Given a complex-valued sequence of partial sums {Ak’Ak+1""}
which converges to A, McWilliams (1969) has established conditions

under which the following results hold:

A - e, (A)
Une (A) = A, (n=1,2), lin — 8 oo,
mre m A - Am+1
and |
A -e (A )
lim — 2 =2 0 (for any j). 1
me A - Am+j

The theorems in the present section involve el(Fq(x)) and are’
the stochastic analogs of the above results involving el(Ah)'

Egsentially the same results are obtained with lim replaced by

p-1lim.
A'-el(Am)
A sufficient condition for 1lim A A =0 1is
me o ml
a
lim — =R, 0<[rRl <1 (4.4)
m m-1 ‘

vhere a_ = A - Am-l' Recalling Theorem 2.2 it is seen that,

it

=R form?> LY

a1




then

A, - el(Am)

=0 form > m,

A = Aoy
Condition (4.4 1is thus seen to be a relaxing of the condition
needed for el(Am) to be exact, with the result being that el(Am)
converges more rapidly than Am+1'

In the setting of interest here we have a " ¢(m)eimx

and 3 - ¢(m) eix . In this case, then,a coudition equi-
am—l $ (m-l)

valent to (&.4) is

1m 2B o g ,0<|Rl < 1. G%.5)
o P(2-1)

If (4.5) holds we have

F (x) - e, (F (x))
lin 1= -0, '
= F_(x) - Fm+1(x)

where F_(x) = ; ¢(v)eivx. This property suggests that, under

4.5y, el(ﬁm(x;;lmight converge more rapidly in some stochastic
sense than does §m+1(x). This pogsibility will be investigated
later, but first it is necessary to verify that el(ﬁm(x)) does

indeed converge to F_(x) under a condition similar to (4.5).

The verification of this fact is the subject of the next theorem.

Theorem 4.2 Suppose f(+) is a probability dengity function
defined on [~7,7] and that £(°) has a Fourier series representa-
tion for all x in that interval. Further, suppose that (4.5 holds

qQ a
and that‘g%ay = 0(1) (asa n + =), If fl'q(’) i{s based on a




random sample xl,...,xn from £(*), and q = o(fn n) (with q
unbounded), then

p-1lim fl,q(x) = £(x) for all x e[-m,u] .
o

Proof: Since El,q(x) = %;[1 + 2Real(e1(§q(x)))],

£(x) = 3{1 + 2Real(F_(x))],

and

p-1lim Real (Zn) = Real[p-1lim Zn] R
e o

it is sufficient to show that

p-lm o) (F (1) = F (x).

e
Observe that - - ~ (
- F(x) ~a, ,e F x) - -
el(Fq(x)) - 3 .(92 = g-1 s (a(q) = —QLS:ll )
1- Tl ¢(q)
N iqx , 2 - ix
. $(qde” " + li‘q_l(x)[l-a(q)e 1
l-a eix
(q)
- N igx
- F (x) + Qe
q-1 1 ix
-u(q)e

Since q = o(fn n) it follows from the proof of Theorem 4.1 that

p-lim P (x) = Fu(x). Thus, if
e

- igx
e l-a(q)e

the result is proven. We have
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p-lim ¢(q) = lim $(q) + p-11m(d(q) - 4(q))
noe e o

= p-lim (;(q) - ¢(q)).
W

Since E[$(q) - ¢(q)] = 0 for each q, and var[&(q) -~ ¢(q)] =
-(1.|¢(q)} ) *0asn+=, it follows that p-lim(¢(q) ~¢(@)) =0

and consequently p-lim ¢(q) = 0. As |¢(Q)e1qx| - |¢(q)|, we

e
also have '
p-1im|$(q)el%®| = 0, (4.6) 1
nre
Now consider -
. D 4+ Lo Gar)-s(er))
lim a 1im " ! < .
L ()P~ 1
e e 1+ 350 @ - )

By the above ;(q+j) - ¢(q+j) = 0 (7350 (3 = 0,1), and thus if

1.1
by
1 1 q :

lim =F— - == la R__ 1 ]

e ¢(a) n o> $(q) RV : .

= 0 we have p—lim a(q) = R. Now,

q
By hypothesis [ ;%;Tl is bounded, and so it 1s sufficient to show

1 1
= 1lim
) Rq¢5J o /7
Now, Ul(rq/l;)-qlnr+%£n n=4nn {L%i— + -}} + ® ag n += gince
q = o(&1 n). Since n(rIvn) += we have t3/a + =, and thus

=0 (r=|R]).

1lim = 0. As stated above this implies that p~lim a

= R
e r3/a e

(@)

and consequently p~1lim l-u(q)eix-l-Reix#O. Along with (4.6), it
b iwad
then follows that

plin _¢(q) el -0
~ i“ »
b l-a, . e
(q)

and the proof is complete.

The assumption chat q tends to = at a rate slower than
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Zn n is undoubtedly more severe than is needed to induce f1 q(-)
24

to converge. From the above proof it is clear that if

- ix
p-lim (1-a, e ") = Z(x),
e (@)

where Z(x) satisfies P[Z(x)#0]l=l, then the result of Theorem 4.2
follows. However, the assumption that q=o({n n) proves to be
advantageous since this assumption will be necessary in order to
prove subsequent more rapid convergence results.

In the next theorem we establish a more rapid convergence
property of el(iq(X))' This result and its proof closely parallel
the result and proof of McWilliams in the deterministic setting.
Theorem 4.3 Under the conditions of Theorem 4.2 we have

F (%) - e (F (x))

q+1(x) t 1

p-lim =
e F_(x)-F

Proof: Clearly - - ix%
Fg®-ag)e Fga

F () R0 - Ta(qel®
(x) F_(x) - ?q+l(x)

F (x) -~ e
F (x) -

ey |1

g+l
¢(QTl)ei(q+1)x

F.(x) - gq(x) - l-a<q)eix
F (x) ~ ?q+1(x)

. dlataggye (7%

r,(x)-rqﬂ(x) - 71 - aggyeix
F (x) - Fq+1(x)

1(q+2)x

¢(q+1)c(q)e

- ix
. . 1 u(g)e
F'(x) - F

(x)

q+l




Therefore,
F (x) - ‘1(Fq("))

p-1lim ~
e F (x) - Fq+1(x)
~=1 7 1(q+2)x
) R a(ﬁ9¢(q+2)e
- - ix p—lilll -
1-Re e F (x) - Fq+1(x)
Q‘Sg+2)
1 ¢(q+2)
= l- P-lim — ~ @ *
1-Re™ me [¢(q+2)ei(q"'2)x] l[Fq+1(x)'?c1+1(")"'}: () e

veq+2

Using arguments similar to that in Theorem 4.2, it is easily verified

that
p-1im $(q+2) - e e -
o #(gr2) T3 PR gy (R (1) < Fgyy 01 = 0.
In addition, McWilliams has shown that
1 (g2 TDF T 5 gt . L
e v=q+2 1-Re
under the assumption that 1im dm) R. It therefore
o ¢ (m-1)
follows that
p=-lim Fn(x) = el(FcL(x)) - 1 - 1 . 1- Reix
e F(x) = Fopy(x) 1-Re™
= ol

Two points should be made about the result in Theorem 4.3.

First, the theorem should be regarded as an optimality property

of %1 q(-) but not as proof that %1 q(-) converges more rapidly
» »

to £(.) than f (). 1In order to prove this result it is

0,q+1




necessary to show
Real(F_(x) - el(FcL(X)))

p-1lim ~
e Real(F (x) ~ Fq+1(x))

which of course is not an immediate consequence of Theorem 4.3.
However, since £(x) is completely determined by F_(x), an estimator
of F_(x) which has good properties is of considerable importance.
The second point to be made regarding Theorem 4.3 involves the

~

rate at which q + =, In order to imsure the convergence of fl q(-)
»

it was seen in Theorem 4.2 that we must have q = o(Zn n). However,
restricting q in this way in a comparison of el(g'q(x)) and i;q +l(x)
is, in a sense, unfair, since ;‘m(x) is consistent for F_(x) even
when m = o(/n). Ideally, a comparison of the rate of convergence
of el(;'q(x)) and ;'m(x) should be made with q = o(Zn n) and m = o(vn).
By modifying the conditions of Theorem 4.3 41t is possible to show
that -

F (x) - el(l"q(x))

p-1lim = = 0,
nre F (x) - Fm(x)

where q = o(€n n) and m = o(vn). This fact will be proven in
Theorem 4.4,

Before moving to Theorem 4.5 we shall examine the effect
which an assumption like (4.5) has on var[}:m(x)]. This 1is impor-

tant, as the rate at which Fm(x) converges to F_(x) is directly

(

affected by var[Fm(x)]. Now, since 5(

o
o-1) cannot converge to R

any faster than in the case where

m
¢ (m=1)

= R form>mo, G.7)
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we will assume (4.7) and then calculate var[%m(x)]. Under (4.7)
we have
¢(m) - R¢(m=1) = 0 for m > m,,
which implies that ¢(m+k) = $(m )RS, k = 1,2,... . Using the
formula for var[gm(x)]obcained in Theorem 4.1, we have
m-1lm

- m
var[F (0] =15 (1-sm) D + 21 T G--e(me-)e
v=1 =1 v=k+1l

1 (v-k)x

m-1 m
T L (¢(v-k)-¢ (V)d’(fk))ei (v-k)x )

vl kawydl

+

Bl

The first term in this expression is 0(%) regardless of what
assumption is made about ¢(v), and thus only the convariance
terms need to be considered in investigating the rate of con-
vergence of var[;'m(x)] . The second covariance term is simply
the complex conjugate of the first, and so we consider omly the

first term. Under assumption (4.7) this term is (form > m, + 1)

0

w1l m m n

I T R L TS P i SO PSRN )
kel vkl kel i+l

2
[¢m )| =1 _ k-m m _
_ ___nﬂ_ T ®) Oe ikx s RV moeivx
k-mo'l-l v=k+l

It is easily verified that the last term in (4.8 is

|¢(mo)|2 IR %Rel® (1-|r|2(@ B D) (gel¥ymByodpy_ (Re~ixymmgmly

n 1-Rel* 1- |r|? 1-ReIx )

The second term in (4.8) is




n.+1
% ';ON K)e Lkx Zo d(v)e ivx ¢(m ) I RV P IvX
k=1 vuk+l v-'m0+2
m, m,+1
-1 10 -1 (n) e I
k-l vak+l
m.+2 mé+l
N t@y) el 0T L (rel® 70 5 (exy e T
Tx -k)e .
nR"0 1- Re k=1
and the first term is
o1 m-k m-1
-1- Tz e)el™™ 2 Lt me)el™
B kel =l B k=l
¢(m,)m-1
- o] e S
n k=l k-m0+1
m ¢(m ) m-1
- %§ 0% (k) ¥ + I k(Re i")“f
k=1 R°0 kemg+1
m m
= B op0agel™ -1 Oyt
B k=1 B k=l
o @y [ (e (rel™)” ]
+ -
2R L 1-ge™
m +2 o+l
L @) [Re!™ 0 - (re'®)
n ;20 i a- Reix)z
gl
(m +1) (Re ) - m(Rei‘x)ul ]
+ .
1l - Reix

The important thing to note about the three terms which make up

m
(4.8) 1s that they are all 0(%). Since% IQ- [¢(v)|2) is
k=l




also 0(%), this implies that var[]e:m(x)] - 0(%). Under condition
(4.7) it thus follows that the truncation point m may be allowed
to become large more quickly than generally stated. Specifically,
E’m(x) is consistent for F_ (x) so long as m = o(n).

We are now in a position to establish our most important

large sample result involving el(Fq(x)) .

Theorem 4.4 Under the conditions of Theorem 4,2 and the

additional assumptions that -L(E-)- = 0(v/m) and
R

- -1
S TC) I S P 1 M S WY [
L ) (vio Yo ) o (7: R (4.9)
we have
p-lim Fa(® =& (F () 5 eor a1l xe[-m,1] ,
e

F (x) - im(x)

wherem-[na],0<a<%.

4’(9)e1qx
2 :Lx
F (x) - e (F (%)) F (x) - F (x) - 1~a .
Proof: = 1 9 - -1 (@° -
F (x) - Fm(x) F (x) - Fm(x)
. “( )eiqx
- ivx - ix
) (x)~F (x)+ Zsi(v)e - l—u(q)e
F (x) - F (x) + E ¢(v)e
v+l
¢(q)
‘a . a y Svtg) tvx — :
—=(F__ (x)-F 1)) + =4 2y(qret? -3 ix
G m o ¢@ @ ). .10
A : Y i(m+1)x s _¢(mtltv)  tvx
-/—;— (Fm(x) - Fm(x)) + 75—- ¢(m+l)e vEO YO SY)




(e ——
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We have

11m—"-ﬁ—¢(m+1)-11m-"-“—%“;j"r’{-l—)-n“‘+l -0
e o+ /m R

since

—%‘:—Iﬂ - 0(/a) and m = [n%] .

Also recall that

14m T ¢ (mtldv) dvx _ 1

m v=( ¢(a+l) 1-Re

ix

The previous considerations concerning var[Fm(x)] indicate that
one of the following holds

var[-{-/g—(l?m(x) - i’m(x))] > oy $0

or

vat[-'i-“—-(Fm(x) - i‘m(x))] +® agn-+w,
m

It thus follows that the denominator of (4.10) converges in prob-
ability to a random variable Z(x) which satisfies P[z(z) # 0] = 1.

Therefore, in order to prove the result it is sufficient to show

that the numerator of (4.10) converges in probability to zero.
Clearly (since q =o(£n n) and m = [n*]) the first term of the

numerator goes to zero in probability as n + ~», The second term

18 (with s (x) = $lgtv)  ivx,

v=0 ¢+(q)
$(q) - ix, ¢(q)
a igx _ () a 1qx)2 %) ¢ )" (@)
¢(q)e a (x) = = —d(q)e = o
/a 1 l-a(q)e Ya 1-a(q)e
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- ( N 2
QSQ Q g+l ix 9592
- ./_n:_¢(q)eiqx 8 (x)(MQ) ¢Gl) ) (J;(Q .
3 (QS:Q 6(q+L) Jix )
¢(q) ¢(q)

The denominator of the expression in brackets converges in prob-

ability to (l-Reix). The numerator may be expressed as

1
072 0_(A) 2
Q(q-l-l) ix - pvn
s 1 £ - Ry e ] -+ )
0 (5=-) 0_ (=)
- - $(g#l) ix, . ., Ppvn’ el¥y.p. R 78" ‘
AT R e Y [aq(")(le -2 25 ] !

The limit in probability of the numerator of (4.10 is thus

1
1 /n 1, iqx 0 (7n )
p-lim 20 (—)e'V[a (x)(1-e")-2- 2 PA]
1re!*ne & P A $(a)

+ L0 1 B 4@)et%a ma - ﬁ%%l ey - 11 . G.11)
1-Re e vm 9 ¢(q
Clearly p~lim —@—0 (—1—-). 0, and, as noted in Theorem 4.2,
e Yo P/a
0 (71.-) L
p-lim —E—(l)— = 0 and 1im a_(x) = o
e ¢(q e 4 1-Re

Thus, (4.1) is simply

—-—i———i lim £¢()1qx[(1 Mﬂle )-a (x)] s
(1-et e o= @

which by hypothesis is zero, and the proof is complete.

In light of previous considerations we point out that, 1if

instead of assuming (4.9) we assume that (4.7) holds and m = [nQ],

0 <a <1, then the preceding proof remains valid.
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Assumption (4.9), which is crucial to the proof of
Theorem 4.4, has to do with how quickly the ratio %%%;ll
approaches R. Note that since
1lim iﬁ%i%l = R, (1 --QS%:%l eix) - a-l (x) ~0
e 204 o(q q
$(q+1)
as n + =, However, in order for (4.9) to be satisfied (9 must
converge to R rapidly enough to compensate for the fact that —E—Iqu*w.
m
The convergence of ié%%%l to R is the more rapid of the two, and
(4.9) is obviously satisfied, in the case where (.7) holds. Con-
dition (%.9) may thus be regarded as an indication of how far the
Fourier coefficients of f(-) may depart from the model "¢(m)-R¢(m-1)~0
for m > mo" while still maintaining the property i
F_(x) - e (F_(x)) t
p-lim —o 19 =0.
e F (x) - Fm(x)

We would indeed be remiss i{f the current section was concluded

l,q(')

should properly fit into a general approach to density estimation.

without a discussion of how the previous results involving f

First, if the Fourier series estimator fo m(-) is employed to estimate f(-)
’

then the results of this section provide a justification for at least

(+). The nonparametric

considering f q(-) as an alternative to f

1, O,m
nature of the density estimation problem does not allow us to make
specific assumptions (such as those in Theorems 4.2 and 4.4) about
the underlying density, but thig fact should not blind us from the

realization that one estimator may perform better than another in

certain situations. In Theorem 4.4 conditions were established

under which fl q(-) would reasonably be expected to perform better
*




than fo m(~). With these thoughts in mind, the only question
’

which remains is the following. For a given data set, how does
one recognize if the situation calls for the use of f1 q(') (for
’

some q) rather than f (+)? 1Two possible answers to this

O,m
question will be offered in Chapter V.

4.4 Extending Results Involving fl q(-) to Higher Orders
2

As mentioned in the previous section, McWilliams has investi-

gated certain properties of the ez-transform. Since
~ 1 R
fz’q(x) oy [1+ 2Rea1(e§Fa(x))] (for q > 2),

some insight into when f2 q(-) may be of value as an estimator of

?
f(*) can be gained by considering the theorems of McWilliams
involving ez(Am). The following two theorems, stated without proof,

have been proven by McWilliams (1969).

2+l
Theorem 4.5 If Am + A, 2 = Rm-+ R#¥1, and
R R
lim :+1 — : = Q ¥ R, then eZ(Am) > A, .
me w2 m+}

Theorem 4.6 1If the conditions of Theorem 4.5 are satisfied, and
if further R # 0 and

A Am+1

A - A.Ill

+R,

then

=0 for any § .




Using the results of Theorems 4.3 and 4.6 and proceeding as in
Section4.3 onme could undoubtedly establish results for ez(iq(x))
paralleling those of the previous section. The proofs of these
results would be somewhat more tedious than those in the first
order case (due to the increased complexity of the ez-transform),
and perhaps not altogether necessary. It seems that the proven
worth of ez(Am) (as evidenced in Theorems 4.5and 4.6) in the
deterministic setting is alone a motivation for considering
%Z,q(') to be, in certain situations, a viable competitor of

the Fourier series estimator.

Except for the situation in which {am} ¢ L(n,8), conditions
insuring the convergence of en(Ah) and the more rapid convergence
of en(Am) than A have not been established for the cases where
n > 3. However, the importance of the exactness result obtained
in.Theorem 2.2 should not be overlooked. Even when the assumption
{am}eL(n,A) is only approximately satisfied, en(Am) can be expected
to be of considerable value. This fact was demonstrated in the
examples of Chapter IT. Likewise using Theorem 2.2 as a justifi-
cation for considering Ep,q(.) to be a candidate estimator of £(-),

there remains the problem of how to select p and q. This problem

is the subject of the next chapter.




CHAPTER V

THE PROBLEM OF SELECTING p AND q

5.1 Introduction

Up to this point, the primary objective of this work has
been to illustrate and discuss the various reasons why the class
of ARMA estimators are of value in the density estimation problem.
Armed with a suitable class of estimators, we are left, however,
with the practical problem of choosing an appropriate estimator
(based on data xl,...,xh) fr;m this class. Given a realization
XyseeesXy from £(+), the class of ARMA estimates of the density
function is indexed only by p and q, and so choosing an appropriate
estimate is equivalent to choosing appropriate values of p and q.

All density estimation methods have a problem similar to
the one described above. Typically a class of estimates is
indexed by a parameter, often referred to as a smoothing para- -
meter, and a suitable value of this parameter must be chosen in
order to arrive at a final estimate of f(+). For example, when
employing a kernel density estimator

£ (x) = ?x(x;xi—) ;
i=1 h
a suitable choice of the smoothing parameter (or window width)
h must be made. Duin (1976) and Hermans and Habbema (1976) have
proposed a modified maximum-likelihood approach to the problem

of choosing h. In addition, Silverman (1980) has suggested a

85




method for choosing the window width based on the so called test
graph theorem. The problem of choosing a smoothing parameter
also arises in a method proposed by Wahba (1977). Wahba's esti-

mator is (for x ¢ [0,1] and n even)

- n/2
Fx) = T 2WV)4 eZWivx

ve=n/2 1+ (272v)

which is seen to be a Fourler series estimator to which a low-pass
filter has been applied. The smoothing of E(-) is accomplished by
varying the parameter A rather than the truncation point of the
Fourier series as in the method of Krommal and Tarter. Wahba (1978)
chooses A so that the estimated MISE of %(°) is a minimum. The pro-
blem we have discussed is shared even by the primitive histogram
estimator, whose smoothing parameters are the number and size of

its class intervals.

In ARMA density estimation, the pair of values (p,q) may be
regarded as the smoothing parameter. In the remainder of this.
chapter two different methods for choosing this parameter will be
presented. In the first method we propose the use of the S-array
for choosing (p,q), since the ARMA (p,q) representation for f£(-)
1s equivalent to assuming that {¢(v)} ¢ L(p,A) for v > q. In the
second method (p,q) 1is chosen in such a way that the estimated
MISE of 6;.q(') is minimized over a suitably restricted subclass

of ARMA estimates.

L)

5.2 S-Array Method of Selecting p and g

As proven 4in Chapter II,the assumption that a fuanction f(°)
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has an ARMA (p,q) representation is essentially equivalent to

the assumption that
{¢(v)} € L(p,4) for v > q.

Therefore, given estimated Fourier coefficients ¢(1), ¢(2),...,¢(M, a
natural way of selecting (p,q) is to examine an S-array (see Gray,

Kelley, and McIatire (1978)) composed of values Sn(ﬁ(m)eimx)(xe[—w,v]).

S, (0@e™) sc; , m2q' and
Sp,(;(m)emx) ¢, 5 m<-q' -1

supports the choice of (p',q') for the smoothing parameter (p,q)‘in
the sense that such a pattern supports the existence of a similar
pattern in the S-array based on Sn(¢(m)e1mx).

Some experience with simulated data has shown that even when
a good constancy pattern exists in the parametric S-array, the
sample S~array tends to be more noisy than arrays encountered in
time series applications. The method of selecting (p,q) discussed
above must undoubtedly, then, involve a good deal of subjectivity.
For this reason the S-array should be regarded as a tool for pointing
out a restricted class of candidate ARMA estimates. Additional analy-
sis may be performed on the restricted class of estimates to deter-
mine a final estimate of £(°).

One possibility for arriving at a final estimate would be to

perform some sort of smoothing in the S-array colummns where con-

stancy patterns are apparent. Tukey (1978) has suggested the use

of his 3RSSS smoothing procedure as a means of making noisy patterns

in the S-array more informative. After smoothing competing columns
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a choice for (p,q) may become obvious. A second possibility for
obtaining an estimate would be to estimate the MISE for each
candidate in the restricted class of ARMA estimates, and then
choose that estimate which minimizes the estimated MISE. A
procedure for estimating MISE is discussed in the next section.

In Chapter VI, the S—array method of selecting (p,q)

will be exemplified in the analysis of two different data sets.
The smoothing procedure discussed previously has not been investi-

gated, but we do examine the estimated MISE criterion.

5.3 MISE Criterion for Selecting p and q

Ideally we would like to choose an estimator from the ARMA
class which satisfies some optimality criterion with respect to
£(*). A criterion which is common in the estimation of probability 1
density functions is to seek an estimator which minimizes the MISE.

In ARMA density estimation this entails choosing (p,q) such that
MISE(E. ) = E(fTCE. (x) - £(x))%dx]
>4 Zp Pad

is minimized. This, however, is an impossible task since the
optimal value of (p,q) depends on £(°*), the function which is to
be estimated. Therefore, given data XysecesX,, OUT approach will
be to choose as our estimate of £(°) that ;P’q(-) for which an
estimated MISE(Ep’q) is minimized. In the remainder of this
gsection we discuss the problem of estimating MISE (gp q)'

Consider

I 2 w2 L 0
Iw(fp’q(x)-f(x)) dx I“fp,q(x)dx z{wfp’q(x)f(x)dx

+ f"fz(x)dx.
-




From this expression it is clear that the value of (p,q) which
minimizes

- Ta
J(£_ ) = E[f £ (x)dx - 2[ f (x)f(x)dx]
P9 -1 Psq - P»q

also minimizes MISE (fp q). It is therefore sufficient to con-

sider only the estimation of J(fp q). This observation greatly
>

simplifies our problem.

Recalling relationship (3.6) we have

3, - z[f o pra(0x + 2" fo (8, (R ax

~y -
+ {:gp’q(x)dx - wafo’p+q(x)f(x)dx - Zf gp (x)f(x)dx]

-1

= J(Eo, ) + J(; ) + ZE[I f (x)ép’q(x)dx]

pHq 0,ptq

Now J(fo P+q) has a particularly simple form in terms of ¢(1),...,
]

¢(p+q) for which there is an unblased estimator. We have

J(Eo’p+q) - E[zi (1+z EIC) )] - 2] £) prq (D E(R)ex
- efz(12 villécv)[z)] - %(1+2v£1|¢(v) 1%).

Since E(;%I |¢(v)l2 --;%I) = |¢(v)|2, it follows that an unbiased

estimate of J(fo,p+q) i
- oa ptq . pHq -
1 2 1 n 2 1
J(fo’p+q) - 7;(1 + zv£1l¢(v)l ) --;[; + 2v51(H:I|¢(V)[ - E:T)]
-1/ 2(n+L) 2(p+q)
™ \1 + (n-1) v-1|°( )l ) n(n-1)

Interestingly, it is seen that the first term of J(f ) decreases

0,p+q

as p+q increases, but that the second term penalizes an increase




in p + q. Thus, J(f ) is sensitive to both the fidelity

0,pHq
and stability of fo p+q( ). 1In addition, it is easily verified
that J(fo,m+l J(fo ) is the same estimate of MISE (f0 m+1)

- MISE(fo m) as that derived by Kronmal and Tarter (1968). This
1)
fact points out a correspondence between the optimal stopping
rule of Krommal and Tarter and J(fo m).
»

An unbiased estimator of the last term of J(fp q) is
]

- .
2_{ fo’P+q(x)gp’q(X)dx,

which is zero whenever the estimate fp q(-) gatisries condition S.

This leaves us with the problem of estimating

- w2
J(sp.q) - E[I g5, (x)dx] - 2&(f" Sp (x)dF(x)].

-

Since an unbiased estimator of E[f g (x)dx] is f (x)dx,
p - Psq
we focus our attention on E[f g (x)dF(x)] To estimate this

quantity we propose the use of the bootstrap mechanism of Efron
(1979).
In order to illustrate the bootstrap in this setting, let

X= (xl,...,xn) denote a random sémple from £(*). Further, let

<) indicate that *) is based th le X, and
gp,q,x( ) indicate tha gp’q( ) is based on the samp .

write

R(X,F) = I gm’ (x)dF(x).

1f (xl,...,xn) is a realization of X with corresponding empirical

cdf Fn(-), then the bootstrap estimate of E[R(X,F)] is

o .
E[R(X*,F )] = E[

a j-lgp 9, x*(xj)],
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where X* is a random sample from Fn(°). This estimate is seen
to be Fisher consistent, or in other words, the estimate is
equal to the parameter it estimates when Fn(-) = F(+).

As it is not possible to apalytically evaluate E[R(X*,Fn)],
Efron suggests that numerous samples X* be generated from Fn(-)
in order to empirically evaluate the expectation to a close approxi-
mation. In our application this procedure would be prohibitive
since E[R(X*,Fn)] must be evaluated for numerous different candi-

-

date estimators, fp'q('). Fortunately, Efron also derives a second
order approximation to E[R(X*,Fn)] by expanding R(P*) = R(X*,Fn) in
a aylor series about-%(l,l,...,l) where P* = (P*,...,P:) and
P; --%(number of X*j's which equal xi). (R(X*,Fn) depends on
X* only through P* since R is symmetric in the X;'s.)

Wong (1979) has derived an explicit expression for Efron's
approximation to E{R(X*,Fn)] which he shows, in fact, to be a
jackknife approximation to the bootstrap. We have

n
E[R(X*,Fn)] =jilR(x(j),Fn) - (n-l)R(x,Fn),

where x(j) = (xl’""xj-l’xj+1""’xn)‘ In our problem this

implies that

n o, 0. (n—l)n"
E[R(X*,Fn)] =j£1{5iilgp’q:x(j)(xi)} B “‘;“iilgp'q,x(xi).

An even simpler approximation is possiule by notimg that (for n

reasonably large) gp'q’x(J)(t) ] gp’q’x(t) except possibly for

t in a neighborhood of x This observation gives

3
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n l'_ S 1 o . (x )
E[R(x*:Fn)] a 321{ a 8P.qnx(j)(xj) + 151 Psq,X 1
1 -
- 5 q,x(x.‘l)} - _iflgp,q, (x )
1 n -~
- (x,).
B gu1 PrD%(y) E

Wong (1979) uses this second type of approximation to show that
the modified maximum likelihood method of choosing a smoothing

parameter is related to the bootstrap.

If we take
JNg )= (x)dx - = T g (x,),
Psq P q n §=1 p!‘bx(j) 3

then our estimator of J(fp q) is
*

e ) = E(EO,M) + i(g Ot zr £ (x)dx.

Psq 0 p+q(x)g

Now, if A 1is some subclass of the class of all ARMA estimates, then
we define fp. q.é)io be the A ARMA estimate of £(+) if and only

£ € D eA
i p',q'( ) ¢ A and

-~ oA

Jf <3§ ; . Ao
( p',q') <3 p,q) for all p,q( ) e

The class A should be large enough to insure that an adequate
estimate of £(-) is obtained, but not so large that the computing
time required to identify Ep.’q,(-) is excessive. One method of
restricting the size of A is suggested in the previous gection
through the use of the S-array. One might also consider the

class A, of all ARMA estimators fp q(') satisfying piq < M.
]
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The considerations of Chapter IV indicate that, if M is chosen

to be a function of the sample size n, it would be reasonable

to have M = o(/ES.

In the next chapter, we will investigate the A ARMA

estimator by means of simulated data.
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CHAPTER VI

ARMA DENSITY ESTIMATION IN PRACTICE, AND A SUMMARY

6.1 Introduction

In this final chapter the use of ARMA representations
in density estimation is exemplified with the aid of both real
and simulated data. In Sections 6.2 and 6.3 two data sets
which have appeared previously in the literature are considered.
The LRL data of Good and Gaskins (1980) and the Maguire data of
Maguire, Pearson, and Wynn (1952) are analyzed, and density
estimates are obtained using the results of Chapter V. The
effectiveness of the estimated MISE criterion for choosing p
and q is evaluated in Section 6.4 by means of simulated data.

The results of the simulation study show the criterion to be

quite effective in distinguishing between density estimates
which have important differences in ISE.

Section 6.5 1s devoted to summarizing the density estima-
tion results obtained in this work. In addition, some areas for

future research in ARMA density estimation are indicated.

6.2 The LRL Data

Good and Gaskins (1980) have analyzed a data set, which

they call the LRL (Lawrence Radiation Laboratory) data, comn-
sisting of "n = 25,752 events from a scattering reaction". The

data are recorded in the paper of Good and Gaskins in the form

. ‘I“-
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|
|

of a frequency table made up 172 bins of width 10 MeV each.
The ith bin includes nievents, and the bins are centered at

the values (in MeV)
yi = 285 + 10(1-1)’ i = 1,2,0-.,172-

In the analysis to follow we consider the transformed
data

T
xi - l—na-(zyi - 2280) ’ i= 1,2,...,172-

The Fourier coefficients ¢(v), v= 1,2,..., associated with the

density £(+) of the transformed data are estimated by
172

;(v) -% T nje'i""j , Vv=1,2,... . (6.1)
i=1

The aim of Good and Gaskins in analyzing the LRL data was
to obtain an estimate of the underlying probability density by
using their maximum penalized-likelihood method (see Good and
Gaskins (1971)), and to then describe a procedure for assessing
the likelihood that a bump found in the estimate is also present
in the underlying demsity. Our purpose in analyzing the LRL
data is to

(1) 1llustrate the cogent information contained in the
S~array about the type of ARMA estimate which should
be fit, and

(1i) to obtain an estimate comparable to that of Good

and Gaskins.

In this example, the estimated MISE criterion for choosing (p,q)
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is considered only for estimates with p = 0, as some modifi-

cation of the jackknife approximation to the bootstrap is needed
for grouped data.

Table 6.1 shows a portion of the S-array for the sequence
{(-l)m;(m)}, where the ;(m) are as defined in (6.1). The array
based on'{(-l)ms(m)} has been tabled since it shows a much clearer
constancy pattern than does the array based on {;(m)}. This
behavior is caused by the fact that,
as will be seen shortly, estimates of the density £(+) have
considerably more "power” near x = O than near x = 7,

The constancy apparent in the first two columns of the
array in Table 6.1 gives clear preference to ARMA estimates with i
Pp=lorpm=2, qawever, a fuller understanding of the informa-
tion contained in Table 6.1 can be gained by initially consi-
dering the estimates 21,0(.) and %2'0(-), which are plotted in
Figures 6.1 and 6.2 respectively. From these two figures it
i3 clear that the constancy in the first column of the S—arra&l
corresponds to a bump (in the terminology of Good and Gaskinsg)

at about x = -1,40, and the constancy in the gsecond column

corresponds to this same bump and another smaller bump at about
x = ,55. Interestingly, Ez’o(-) is virtually the same estimate
as that obtained by Good and Gaskins except for the presence of
11 additional, very small bumps in their estimate.

An area for future research is establishing a method of

transforming the original sequence of estimated Fourier coeffi-
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cients in such a way that the dominating effect of major peaks
is filtered out. In the current example, such a method would
allow us to remove the effect of the two major peaks (seen in
Fig. 6.2) so that the possible presence of smaller peaks could
be carefully investigated.

In the absence of a suitable filtering technique, we
arrive at a final estimate of f(+) by choosing a Fourier series

estimate f, m(-) which satisfies m ¢ (1,2,...,50} and
»

J(fo.m) < J(£

O,k)’ for k=1,2,...,50.

Note that 50 is certainly not too large a truncation point to
consider in this case because of the extremely large size of
the sample. _

The minimum value of E(EO’R) (for k = 1,2,...,50) occurs
at k = 42, The estimate 20’42(-) is plotted in Figure 6.3 and
nine of the thirteen bumps of Good and Gaskins are identified
(using their numbering scheme). Our much simpler analysis seems
to have arrived at essentially the same results as those of Good
and Gaskins, although collaboration with a subject matter expert
would be essential to correctly interpret differences in the esti-
mates.

As a final observation concerning the LRL data we point
out the similarity of EZ,O(‘) and 20’42(-), which 1s striking when
one considers that 22’0(') is based only on ;(1) and ;(2). The
paucity of parameters required for %2'0(-) to correctly describe
the major features of the LRL data becomes important in smaller

samples. This fact will be illustrated in Section 6.4.
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6.3 The Maguire Data

The data set to be analyzed in this section appears in
Carmichael (1976) and has beenrstudied by Maguire, Pearson
and Wynn (1952), Boneva, Kendall and Stefanov (1971), and, in
a density estimation context, by Carmichael (1976), The data,
which we shall refer to as the Maguire data, consists of 109
"time intervals in days between explosions in mines involving
more than ten men killed, from December 6, 1875 to May 29, 1951."
For our purposes, the 109 values will be regarded as independent
realizations of a random variable whose density function we wish
to estimate.

An initial look at a histogram of the Maguire data indi-
cates the possibility of an underlying exponential type density.

Therefore, since Fourier series approximation methods work best

for functions whose tails are similar, we have employed what

;
;
T
i

Carmichael refers to as symmetrization. Symmetrization entails
transforming the original data to the interval [0,7], and then
estimating the density £#(<) of the transformed data by first
estimating

£(x) = -;-f*(lxl). xc[ -m,v].

The evenness of £(¢) implies that

(v) = f"(coxvx - isinvx) f(x)dx
-1

L
= 2 [ cosvx f(x)dx
0

- g"coxvx fx(x)dx, |v| = 0,1,2,... .
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Given the previous expression for ¢{(v), we form estimates

109

¢(v) = I%g E cos vx

, |v] =0,1,2,...,
]
i=1

of ¢(v), where xj, j=1,...,109, is the Maguire data rescaled
n

to the interval [0,n]. (The transformation xj * 1630 yj was

used since 1630 was the longest number of days between explo-~

-~ -

of the density f*(¢) may then be constructed, where
-~ 1 ~ -~
fp’q(x) - 5 [1+ 2Real{ep(Fq(x)) - Fo(x)}]
and

- j -
F,(x) =L ¢(v)eivx.
3 v=k

A portion of the S-array for {(-1)Ve(v)} 1s given in
Table 6.2. Note that, since in this case ¢(v) is real-valued,

(*)

the S-array is also real-valued. Based on Table 6.2, 21,0
and 21,2(') seem to be the best supported estimates of £f(-), -
and certainly no estimate %p,q(') for p > 1 is supported. For
purposes of the MISE critierion of Chapter V, this pattern in

the S-array suggests that, among estimates fp q(‘) (p>0), we

’
limit consideration to estimates with p = 1,
In order to objectively choose an estimate of f*(+),

we shall calculate E(f; q) for each estimate in the class
%
Aw {f (¢): p=20,1and p+ q < 20}.
P»qQ -

Since ¢(v) 1is estimated differently here than in previous chapters,

the estimate J(fp

q) derived in Chapter V must be modified

’
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TABLE 6.2
MAGUIRE DATA S-ARRAY FOR {(-l)v;(v)}
m/n 1 2 3 4 5 6
~6 ~2.3442 4,1873 7.6413 6243  31.5796 .5846
~5 ~2.6173 2.2878 -1.1070 -24.0702 25.8274 -3,2688
-4 -2.5935 -1.9669 54,7387 <-27.1260 82.1131 -4.,2798
-3 -2.6195 -57.7808 106.6615 -13.2873 ~-1.5643 6.9471
-2 -2.2463 2.3738 1.9639 -4.63246 -6.4719 4.8715
-1 -2.2317 81.9580 3,3973 -9,.9555 -8.5664 50.7821
0 -1.8119 1.8528 -1,1989 1.0701 -1.2228 1.2530
1 -1.8024% 30.1227 - .7049 2.6439 -1.0416 ~1.3733
2 ~-1.6175 1.5569 -1.5230 1.7872 - .4512 6.5955
3 -1.6275 .6980 12.5592 46,2834 -5.1103 3.7425 (
4 -1.6183 -12,1080 4.3602 3.4221 68,0605 2,8217
] -1.7639 4.6512 -3.5795 ~4.6306 19,4732 -.4310
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slightly. We have

R . - )
msz(f;’q) z(£ (f;,q(x) - £*(x))“dx]
and

T
~ -~ 2 “A
J(f;’q) E{(J;[f;’q(x)] dx - 2({ f;’q(x)dl-‘*(x)}.

Proceeding as in Chapter V, it may be verified that the

appropriate estimate of J(f; q) is
1 ]

Tiw ) m o Lpp g 2()PIO02 2 P - )
3y 0 = -+ HERT S+ s anan e,

and
o .
2 (xdax - 2

Lg (
P.q n §=1 Pt‘hx(j)

» *
I, q) = I, g * ‘({ g xy)

-

+ 8f"f (x)g. (x)dx, p > 0 .
0 O,pr P4
Table 6.3 contains the value of 3(3; q) for each of the
»
estimates in A, and shows the minimum of J(f; q) to occur at
1]

fx __(). This estimate is plotted in Figure 6.4, and, for

0,12 -

the sake of comparison, the estimate f* __(-) (at which J(f* )
1,10 1,k

is minimized) is plotted in Figure4.5. The estimate f; 10(°)

is seen to be smoother in the tail than is 26’12(-), a feature
which we noted to be a characteristic of ARMA approximators.
Whether or not the extra smoothing done by 21,10(') is warranted
might best be judged by someone knowledgeable with the physical
situation which generated this data.

An interesting aspect of Table 6.3 is the magnitude of
'3(§i’o) relative to the minimum value of S(Es’q). A comparison

of these two numbers confirms that a low frequency component is
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ﬂ TABLE 6.3

VALUES OF J(f; q) FOR THE MAGUIRE DATA
1

] k £% J(£*
x ey D &5 )
1 -.7360 -1.1907
2 -1.0037 -1.1939
3 -1.1021 ~1.1807
4 -1.1363 -1.1762
5 =1.1449 ~1.1687
6 -1.1468 -1.1828
7 -1.1502 - .9564
8 -1.1695 ~1.1538
9 -~1.1805 ~-1.2262
10 ~1.2075 -1.1659
11 ~1.2179 -1.2266
12 ~1.2291 .2571
13 ~1.2250 -1.2215
14 ~1.2205 -1.1965
15 ~1.2141 -1.2155
16 -1.2085 -1.2176
17 -1.2039 -1.2222
18 -1.2057 -1.2138
19 <1.2091 -1.1927
20 -1.2106 -1.1490
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the dominant feature of the Maguire data, a fact which was
predicted by the first column of the S-array.

A final comment about this data set concerns the ability
of S(E;,q) to distinguish between differing estimates. Figure

6.6 shows a plot of the estimate £2 g(*)» which has the third

largest value of J(f; q) in Table 6,3. Note that ff 6(-) does
? »

not have its maximum at zero, which is true of only one of the

other estimates considered. The other estimate of which this

is true, (<), maximizes J(f* ) and is such that f* (0)=

1 11
-11.87. This is evidence that the criterion J(f; q) is able to
1 ]

identify the poorer estimates of £*(-).

6.4 A Simulation Study

The purpose of this section is to investigate |3
(1) the effectiveness of the MISE criteriom for !
selecting (p,q) in distinguishing between
estimates which have important differences

in ISE, and

(11) the possible savings in ISE which may be
attained by using ARMA,rather than Fourier

series, density estimation.

In order to accomplish the above, simulations (which will here-

after be referred to as Simulations 1, 2, and 3) involving §

three different density functions have been carried out. A
description of these simulations follows. ]
Simulation 1. In this study, 25 independent random

samples, each of size 100, were generated from the Beta (12,3)

distribution using the IMSL subroutine GGBTR. The data
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Vs 1i=1,2,...,100, in each sample was transformed to x, =

w(2yi «-1), {=1,2,.,.,100 (so that the estimated density,

£{+), 1s the Beta (12,3) density shifted and rescaled to fill

[-7,7n]). Then, for each sample, 3(2; q) was calculated for
»
each estimate in the class

All - {fé,q('): p +q < 10};

and All' A12’ and 413 ARMA estimates were identified, where

Arg = 1£g ()t a = 1,2,...,10}, and

. .‘v o) s
7 . A13 {fp,o( )o p - 1,2,.0-'10}-
Finally, for each of these three estimates, fé a(-) say,
1

-~ “ )
ISEC(E! .) = [ (f
Psq

1 (x) - £'(x))24x
-y P4

was evaluated.

Simulation 2. In this simulation, 25 independent random

samples of size 50 were generated from the density function ‘

2e’4lxl

e

£(x) =

a truncated Laplace density. This was done by first gemerating

samples from the U(0,1) distribution (using IMSL subroutine

GGUBS), and then employing the probability integral transforma-
tion. For each sample, J(fg q) was calculated for each estimate
?

in
." LD B4 -
A21 = {fp’ (): p = 0,1 and p + q < 10},

and A21. A22’ and A23 ARMA estimates were identified, where
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A22 - {fa'q(°): q=1,2,...,10}
and

A23 = A22 Lj{f;’q(-): q=~0,1,...,4} .

For each of these three estimates, ISE(f; q) was evaluated.
; ]

Simulation 3. In this final simulation, 15 indepen-
dent random samples of gize 100 were generated from the density

(pictured in Figure 6.7)
£ (x) = 5[l + 2Realle,(F (DM T(_, L (0),

where
4. -
Fk(x) = ¢(v)eivx and {¢(v)}
=1

i{s the sequence of estimated Fourier coefficients from the LRL
data. The samples were generated as in Simulation 2, although
in this case values of the inverse cdf had to be evaluated
numerically. For each sample, E(E;:q) was calculated for each
estimate in

‘Am e) -
A31 - {fp,q( ): p=0,1,2 and p + q < 10},

and the A31 and A32 ARMA estimates were identified, where
A32 - {fazq(~): q=1,2,...,10} .

(Reasons for comsidering the classes of estimates defined in this
and the previous simulation are discussed below.) Finally,
ISE(E;:Q) was calculated for these two estimates.

The results of Simulations 1,2, and 3 are summarized in

Tables 6.4 - 6.6, In order to define some descriptive measures
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which appear in Table 6.4, let fijk(')'be the Aij ARMA estimate
in the kth repetition of Simulation i. Then
= p
ISE,. » — " ISE(f,_.)
13 om0 13k
and
2 1 , = 12
(sp(zsE) 1% = 2, T kf'ltzsxa(fijk) - ISE, 1%,

where my =0, = 25 and m, = 15. The quantity Fij is the

proportion of repetitions in the ith simulation for which

-

fijk i3
which the Aij ARMA estimate is a Fourier series estimate.

(*) = fiZk(-), i.e., F,, is the provortion of cases in

Finally, for § # 2, let
ISE(fi lk)

ISE(fiZk)

yijk - ’ k € sij’

where 311 is the set of mi(l-FiJ) repetition indices k for

ijk) $ ISE(fiZk). Then, based on the Wilcoxon sgigned-

rank statistic for the yijk’ the Hodges-Lehmann estimate of the

which ISE(f

median of the yijk distribution 1s denoted by eij. Hence, the

» of the

quantity R1j -eeij is an estimate of the median, R, 3

conditional distribution of
ISE(fi!k)
ISE(fiZk)

given that  SE(fg0)

Isg(fiZk)

Table 6.5 contains the results of three tests of

hypothesis which address the question of whether or not a
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savings in ISE results from using ARMA density estimation rather

than Fourier series density estimation. The three hypotheses

tested are

HOI: Rll =1 vs. Hllz Rll <1,

HOZ: R23 =1 s, le: R23 <1,
and

303: R31 =1 vs. H13: R31 <1,
The test statistic for Ho1 vs Hli is the Wilcoxon signed~rank
statistic

keSij

where r(+) denotes rank. The reason for the use of the log
transformation is that, since typically the distribution of ISE

is skewed,
ISE(f ) ~
en| —2I& | o pafrsece

ISE(fizk)

Ln[ISE(E

1jk)] - 121 ]

is more nearly symmetrically distributed about zero under HOi

than is ISE(f - ISE(fizk) about its mean. This is an important

13K’
consideration since the Wilcoxon test is based on an assumption

of symmetry. The results of the above tests are indicated in

Table 6.5 by P values which are defined by P,, = P(W+_§ w,,)

i3 i]
where W+ is a random variable having the distribution of a
Wilcoxon signed-rank statistic. In addition, 95% confidence

intervals for the parameters R, , are given.

13
The results in Table 6.5 address the second of the two
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considerations which were the intent of our investigation at
the beginning of this section. These results are strong evi-

dence that a savings in ISE is realized if the MISE criterion

~of Chapter V is allowed to choose from a class of ARMA (p>0, .
q > 0) estimates rather than a class containing only Fourier
series estimates. It is important to note, though, that the
results obtained are conditional on the particular densities
considered, the sample sizes used, and the classes of ARMA
egstimates chosen for consideration. Perhaps the most important
of these three points is the choice of a class of estimates. ‘
The estimates §21 and §23 in Table 6.4 indicate that the number
of ARMA estimates in the chosen class can be an important con-
sideration. Further, it is not clear how the results of Tables
6.4 and 6.5 would have been affected if the classes AZl’ Agqs

and A31 had included estimates with larger values of p. The

restriction of the size of-AZI and A23 was motivated by the

fact that, in some initial repetitions of Susulation I} {pre- -

vious to those upon which Tables6.4 and 6.5 are based), the

S~array for'{(-l)v$(v)} showed a good constancy pattern in
column 1. A similar statement is true regarding A31 and Simula-
tion 3, in which case constancy was apparent in the first two

columns of a typical S-array.

The first of the two points wﬁich were to be investigated

{ in this section concerned the ability of the MISE criterion to

distinguish between estimates having important differences in

ISE. Evidence of this ability is given in Table 6.6 . In
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(1) The class of Fourier series and autoregressive density
estimators is a subclass of the class of ARMA estimators.
(2) The ARMA estimator fp q(~) estimates an approximator

fp q(-) which was shown to be related to the en-transform.
9

This relationship implies that fp q(x) is often a better

b4

approximation to f(x) than is f (x), a Fourier series

0,p+q
approximator.

(3) The estimator %p,q(.) may be expressed in terms of a
quantity which was shown to be an adaptive, generalized
jackknife statistic.

(4) The mixture of densities having autoregressive represen-
tations 1s, in general, a density which has an ARMA repre-
sentation. This result implies that ARMA representatioms
often require fewer parameters to adequately fit a density
than do autoregressive representations.

(5) 1In a probability semnse, the estimator f q(-) possesses

1,
(under certain conditions) a more rapid convergence
property amnalogous to that possessed by e in the deter-
ministic setting.

(6) Two solutions were proposed to the problem of selecting
an appropriate estimate from the class of ARMA estimates.
One solution utilizes the S-array, and in the other solu-
tion an estimator is sought which will minimize MISE(Ep’q).

(7) Simulation studies indicate that (for the densities consi-
dered) a savings in ISE results from allowing the MISE
criterion to choose from a class of ARMA (p > 0, q > 0)
estimates rather than from a class of only Fourier series

estimates.




TABLE 6.6
THE ABILITY OF THE MISE CRITERION TO DISTINGUISH

ESTIMATES WITH DIFFERENT VALUES OF ISE

Type of Estimate P p"
A
11 88.00 63.64
A
13 100.00 100.00
A
21 68.00 58.82
A
23 64.00 81.25
A
31 73.33 90.91
Notes:
1. P' is the percentage of cases in which
J(fijk) $ J(f12k)'
2. Among the cases satisfying E(fijk) $ 3<§12k)’ P" s the

percentsge of cases in which the sign of J(f,,,) - J(£,,0)

and ISE(E,,.) - Iss(?suk) are the same.

13k
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addition, it is noted that for all three simulations the esti-

mates which had the larger values of J(fp q) were consistently

’
among the poorer (in terms of ISE) estimates.

The final remarks to be made in this section concern
Simulation 3. In Section 6.2 it was observed that the first
two estimated Fourier coefficients of the LRL data contained
essentially all the information about the main features of
that data set, a fact that is not detected by Fourier series
estimates, fb’q(-). With this in mind, one of the aims of
Simulation 3 was to illustrate that, if moderate sized samples
were generated from a density like that of the LRL data, a
parsimonious ARMA estimate would be preferred to a Fourier
series estimate. That this is the case is evidenced by
Table 6.5 and the average number of Fourier coefficients,

N(A..), used by the A,, ARMA estimates of Simulation 3. We

33 3

have

N(A31) =4 and N(A32) = 5,47,

and thus the considerable savings in ISE obtained using the A3l
ARMA estimate occurred even though the ARMA estimates were, on
the average, based on fewer fitted parameters than the Fourier

series estimates.

6.5 A Summary
A new class of estimators of a probability density func-

tion, referred to as the class of ARMA estimators, has been
introduced in this work. The principal results obtained con-

cerning this class of estimators may be summarized as follows.
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Although some important results have been cobtained in
this work, there remain numerous topics for future research
in ARMA density estimation. Some of these topics, such as the
establishment of more general large sample properties, the
routine choice of a class of estimates, and further investi-
gation of the problem of gelecting p and q, have been alluded
to previously. However, perhaps the most important area for
future research is a large-scale comparison of ARMA density
estimation to other common methods of density estimation.
Even though new, different methods of viewing an old problem
are of value, it is probably desirable to be somewhat economic
with regard to the number of new methods proposed. For this
reason, before being recommended for widespread use each new
method should be validated against existing methods. A part
of this validation for ARMA density estimation has been accom-
plished in this work, and the results thus far obtained indicate

the possibility of a valuable new method.
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